Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
a) \(\frac{9}{20}\) c) \(\frac{-55}{4}\)
b) \(\frac{116}{75}\) d) \(\frac{-76}{45}\)
đúng hết đấy nhé mình tính kĩ lắm ko sai đâu
chúc may mắn
\(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}.\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}-\frac{1}{3}+1\)
\(\Rightarrow-7x=\frac{-1}{6}\)
\(\Rightarrow x=\frac{1}{42}\)
Vậy ...
\(\)
\(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{18}\)
Vậy...
a) Ta có: \(\left(x-2\right)^3+\frac{8}{27}=0\)
\(\Leftrightarrow\left(x-2\right)^3=\frac{-8}{27}\)
\(\Leftrightarrow\left(x-2\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow x-2=\frac{-2}{3}\)
hay \(x=\frac{-2}{3}+2=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
b) Ta có: \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
\(\Leftrightarrow\frac{13}{3}\cdot\frac{4}{x}=20\)
\(\Leftrightarrow\frac{4}{x}=20:\frac{13}{3}=20\cdot\frac{3}{13}=\frac{60}{13}\)
hay \(x=\frac{13\cdot4}{60}=\frac{13}{15}\)
Vậy: \(x=\frac{13}{15}\)
c) Ta có: \(\left(0,25-30\%x\right)\cdot\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
\(\Leftrightarrow\left(\frac{1}{4}-\frac{3x}{10}\right)\cdot\frac{1}{3}=\frac{31}{6}+\frac{1}{4}=\frac{65}{12}\)
\(\Leftrightarrow\frac{1}{4}-\frac{3x}{10}=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}\cdot3=\frac{65}{4}\)
\(\Leftrightarrow\frac{3x}{10}=\frac{1}{4}-\frac{65}{4}=-16\)
\(\Leftrightarrow3x=-160\)
hay \(x=\frac{-160}{3}\)
Vậy: \(x=\frac{-160}{3}\)
d) Ta có: \(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=-2\cdot\left(-\frac{2}{9}\right)=\frac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}+2\\x=\frac{-2}{3}+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{4}{3}\right\}\)
a/ (x - 2)3 + \(\frac{8}{27}\) = 0
=> (x - 2)3 = 0 - \(\frac{8}{27}\) = \(\frac{-8}{27}\)
=> x - 2 = \(-\frac{2}{3}\)
=> x = \(-\frac{2}{3}+2=\frac{4}{3}\)
b/ \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
=> \(4\frac{1}{3}:\frac{x}{4}=6:\frac{3}{10}=6.\frac{10}{3}=20\)
=> \(\frac{x}{4}=4\frac{1}{3}:20=\frac{13}{3}.\frac{1}{20}=\frac{13}{60}\)
=> \(x=\frac{13}{60}.4=\frac{13}{15}\)
c/ \(\left(0,25-30\%x\right).\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
=> \(\left(0,25-30\%x\right).\frac{1}{3}=5\frac{1}{6}+\frac{1}{4}=\frac{65}{12}\)
=> \(0,25-\frac{30}{100}x=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}.3=\frac{65}{4}\)
=> \(\frac{3}{10}x=0,25-\frac{65}{4}=\frac{1}{4}-\frac{65}{4}=-\frac{64}{4}=-16\)
=> \(x=-16:\frac{3}{10}=-16.\frac{10}{3}=-\frac{160}{3}\)