Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
513 : 510 - 25 * 22
= 513-10 - 25 * 4
= 53 - 100
= 125 - 100
= 25
\(S=\dfrac{2^2}{1.2}+\dfrac{2^2}{2.3}+\dfrac{2^2}{3.4}+...+\dfrac{2^2}{2022.2023}\)
\(S=2^2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\)
\(S=2^2.\dfrac{2022}{2023}\)
\(S=\dfrac{2^2.2022}{2023}=\dfrac{8088}{2023}\)
a ) ( 13 - 145 + 49 ) - ( 13 + 49 )
= 13 - 145 + 49 - 13 - 49
= ( 13 - 13 ) - 145 + ( 49 - 49 )
= 0 - 145 + 0
= - 145
b) 25 . 22 . ( 15 - 18 ) + ( 12 - 19 + 10 )
= 25 . 4 . ( -3 ) + 7
= 100 . [ ( -3 ) + 7 ]
= 100 . 4
= 400
a ) ( 13 - 145 + 49 ) - ( 13 + 49 )
= 13 - 145 + 49 - 13 - 49
= ( 13 - 13 ) - 145 + ( 49 - 49 )
= 0 - 145 + 0
= - 145
\(A=2^{100}-2^{99}-...-2^2-2\)
\(2A=2^{101}-2^{100}-...-2^3-2^2\)
\(2A-A=2^{101}-2^{100}-...-2^3-2^2-2^{100}+2^{99}+...2^2+2\)
\(A=2^{101}-\left(2^{100}-2^{100}+2^{99}-2^{99}+...+2^2-2^2+-2\right)\)
\(A=2^{101}+2\)