\(-x^2+4x-5< 0\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

a ) \(-x^2+4x-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\left(đpcm\right)\)

b ) \(x^4+3x^2+3=x^4+3x^2+\dfrac{9}{4}+\dfrac{3}{4}=\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)

Đặt \(x^2+2x+3=a\) . Khi đó , ta có :

\(x\left(x+1\right)+3=x^2+x+3=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)

\(=\left(x^2+2x+3+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)

\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\left(đpcm\right)\)

27 tháng 10 2018

Vội nên đánh sai :

\(a\left(a+1\right)+3=a^2+a+3=a^2+a+\dfrac{1}{4}+\dfrac{11}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)~

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

7 tháng 2 2020

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-5\\x=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)

Vậy .........

\(b,\left(x^2-4\right)+\left(x-2\right)\left(3-2x=0\right)\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)

Vậy ..................

\(c,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

\(d,x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow2x^2-7x-4x+14=0\)

\(\Leftrightarrow2x^2-11x+14=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

Vậy ............

\(e,\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)

\(\Leftrightarrow3x^2-24x+21=0\)

\(\Leftrightarrow3\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy .....................

\(f,x^2-x-\left(3x-3\right)=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy ..............

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

17 tháng 7 2018

Lần sau đăng thì chia thành nhiều câu hỏi nhé

\(16^2-9.\left(x+1\right)^2=0\)

\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)

\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)

\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)

\(\left[13-3x\right].\left[19+3x\right]=0\)

\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)

KL:..............................

25 tháng 7 2018

Nhiều câu hỏi mà bn ??

b: =>(2x-1)(2x-1+4-2x)=0

=>3(2x-1)=0

=>2x-1=0

=>x=1/2

c: =>(x+1)(x^2-x+1)-x(x+1)=0

=>(x+1)(x-1)^2=0

=>x=1 hoặc x=-1

e: =>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

h: =>x[(x^2-5)^2-4]=0

=>x(x^2-7)(x^2-3)=0

=>\(x\in\left\{0;\pm\sqrt{7};\pm\sqrt{3}\right\}\)

k: =>(x-1)(5x+3-3x+8)=0

=>(x-1)(2x+11)=0

=>x=1 hoặc x=-11/2

l: =>x^2(x+1)+(x+1)=0

=>(x+1)(x^2+1)=0

=>x+1=0

=>x=-1