Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 25 - \(x^2\) = (5-x) (5+x)
b) -196 + 4\(x^2\) = 196 - 4\(x^2\) = (14- 2x) (14+2x)
c)\(5^4-81x^4\) = \(\left[\left(5^2\right)^2\right]-\left[\left(81x^2\right)^2\right]\) = (\(\left(5^2-81x^2\right)\left(5^2+81x^2\right)\)
\(a,25-e=\left(5-\sqrt{e}\right)\left(5+\sqrt{e}\right)\)
\(b,-196+g=-\left(196-g\right)=-\left(14-\sqrt{g}\right)\left(14+\sqrt{g}\right)\)
\(c,2^6-47^2=\left(2^3\right)^2-47^2=\left(2^3-47\right)\left(2^3+47\right)\)
\(d,5^4-81x^4=\left(5^2\right)^2-\left(9x^2\right)^2=\left(5^2-9x^2\right)\left(5^2+9x^2\right)=\left(25-9x^2\right)\left(25+9x^2\right)\)
\(i,\dfrac{25}{16}-9y^2=\left(\dfrac{5}{4}-3y\right)\left(\dfrac{5}{4}+3y\right)\)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\left(\dfrac{2x}{2x+y}-\dfrac{4x^2}{4x^2+4xy+y^2}\right):\left(\dfrac{2x}{4x^2-y^2}+\dfrac{1}{y-2x}\right)\)
=\(\left[\dfrac{2x}{2x+y}-\dfrac{4x^2}{\left(2x+y\right)^2}\right]:\left[\dfrac{2x}{\left(2x-y\right)\left(2x+y\right)}-\dfrac{1}{2x-y}\right]\)
\(=\left[\dfrac{2x\left(2x+y\right)}{\left(2x+y\right)^2}-\dfrac{4x^2}{\left(2x+y\right)^2}\right]:\left[\dfrac{2x}{\left(2x-y\right)\left(2x+y\right)}-\dfrac{y+2x}{\left(2x-y\right)\left(y+2x\right)}\right]\)
\(=\left[\dfrac{4x^2+2xy-4x^2}{\left(2x+y\right)^2}\right]:[\dfrac{2x-y-2x}{\left(2x-y\right)\left(2x+y\right)}]\)
\(=\dfrac{2xy}{\left(2x+y\right)^2}:\dfrac{-y}{\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{2xy\left(2x-y\right)\left(2x+y\right)}{\left(2x+y\right)\left(2x+y\right)\left(-y\right)}\)
\(=\dfrac{2x\left(2x-y\right)}{-\left(2x+y\right)}\)
\(\dfrac{4x^2-2xy}{-2x-y}\)
a )
\(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x\right)^2\)
\(\Leftrightarrow9x^2-1-x^3+8=x^3-12x^2+36x\)
\(\Leftrightarrow-2x^3+21x^2-36x+7=0\)
Dùng máy tính casio giải phương trình bậc 3 .
\(\Rightarrow\left\{{}\begin{matrix}x_1=8,408912008\\x_2=1,868305916\\x_3=0,2227820764\end{matrix}\right.\)
b )
\(27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
\(\Leftrightarrow27x^3+27x^2-27x^3-27x^2-9x-1=-8\)
\(\Leftrightarrow-9x=-7\)
\(\Leftrightarrow x=\dfrac{7}{9}\)
c )
\(\left(4x+1\right)\left(16x^2-4x+1\right)-16\left(4x^2-5\right)=17\)
\(\Leftrightarrow64x^3+1-64x^2+80-17=0\)
\(\Leftrightarrow64x^3-64x^2+64=0\)
\(\Leftrightarrow x^3-x^2+1=0\) . Tới đây mình botay.
Chúc bạn học tốt !!
a: \(=4x^2-9-4x^2-4x-1=-4x-10\)
b: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
c: \(=8x^3+27-8x^3+2-2x=-2x+29\)
d: \(=x^3-6x^2y+12xy^2-8y^3-x^3+8y^3=-6x^2y+12xy^2\)
\(A=x^2-2x+4\)
\(A=\left(x^2-2x+1\right)+3\)
\(A=\left(x-1\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-1\right)^2+3\ge3\) với mọi x
\(\Rightarrow Amin=3\Leftrightarrow x=1\)
a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)
c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)
d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)
e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)
f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)
g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)
h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)
k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)
N=4x2+4x+1
= (2x+1)2
do (2x+1)2 \(\ge0\forall x\)
MinN=0 khi 2x+1=0
=>2x=-1
=>x=\(\dfrac{-1}{2}\)
N =4x2+4x+1
=(2x+1)2
do (2x+1)2\(\ge\) 0 \(\forall\) x
Min N =0 khi 2x+1=0
=>2x=-1
=>x=-\(\dfrac{1}{2}\)
\(4x^2-49y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-49y^2\)
\(=\left(2x+1\right)^2-\left(7y\right)^2\)
\(=\left(2x-7y+1\right)\left(2x+7y+1\right)\)