Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3^{11}+3^{12}}{3^{16}}=\frac{3^{11}\left(1+3\right)}{3^{16}}=\frac{4}{3^5}=\frac{4}{243}\)
\(\frac{4^{17}+4^3}{4^{16}+4^2}=\frac{4^3\left(4^{14}+1\right)}{4^2\left(4^{14}+1\right)}=\frac{4^3}{4^2}=4\)
Ta có : \(A=4+4^2+4^3+...+4^{17}\)
\(=4+\left(4^2+4^4\right)+\left(4^3+4^5\right)+...+\left(4^{15}+4^{17}\right)\)
\(=4+4^2\left(1+4^2\right)+4^3\left(1+4^2\right)+...+4^{15}\left(1+4^2\right)\)
\(=4+4^2\cdot17+4^3\cdot17+...+4^{15}\cdot17\)
\(=4+17\cdot\left(4^2+4^3+...+4^{15}\right)\)
→ \(A\) : \(17\) dư 4
A = 4 + 42 + 43 + 44 +...+ 416 + 417
= 4 + ( 42 + 44 ) + ( 43 + 45 ) +...+ (414 + 416 ) + ( 415 + 417 )
= 4 + 42 ( 1 + 42 ) + 43 ( 1 + 42 ) +...+ 414 (1 + 42 ) + 415 ( 1 + 42 )
= 4 + 42 . 17 + 43 . 17 +...+ 414 . 17 + 415 . 17
= 4 + 17 ( 42 + 43 +...+ 414 + 417 )
= 4k + 1
=> A : 17 dư 4
Lời giải:
$A=(4+4^3+4^5+...+4^{17})+(4^2+4^4+4^6+...+4^{16})$
$=[4+(4^3+4^5)+(4^7+4^9)+....+(4^{15}+4^{17})]+[(4^2+4^4)+(4^6+4^8)+...+(4^{14}+4^{16})]$
$=[4+4^3(1+4^2)+4^7(1+4^2)+...+4^{15}(1+4^2)]+[4^2(1+4^2)+4^6(1+4^2)+....+4^{14}(1+4^2)]$
$=4+(1+4^2)(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$
$=4+17(4^3+4^7+...+4^{15}+4^2+4^6+...+4^{14})$
$\Rightarrow A$ chia $17$ dư $4$.
\(3^5\cdot3^2\cdot3=3^{\left(5+2+1\right)}=3^8\)
\(16^4:4^2=\left(4^2\right)^4:4^2=4^8:4^2=4^6\)
\(2^5:16=2^5:2^4=2\)
\(4^2:2^4=\left(2^2\right)^2:2^4=\frac{2^4}{2^4}=1\)
\(3^5.3^2.3=3^7.3=3^8\)
\(16^4:4^2=16^4:16=16^3\)
\(a:a=19:17=\frac{19}{17}\)
\(2^5:16=2^5:2^4=2\)
\(4^4:2^4=\left(2^2\right)^4:2^4=2^6:2^4=2^2=4\)
\(\dfrac{4^{17}+4^3}{4^{16}+4^2}=\dfrac{4^3\left(4^{14}+1\right)}{4^2\left(4^{14}+1\right)}=4\)