Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17x-20y=38\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}85x-100y=190\\42x+100y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}127x=198\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\21.\frac{198}{127}+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=4-\frac{4158}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=-\frac{3650}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\y=-\frac{73}{127}\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất là (\(\left(\frac{198}{127};-\frac{73}{127}\right)\)
b)
\(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2.\left(\sqrt{5}+2\right)x+2y=6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2(\sqrt{5}+2)x=6+2\sqrt{5}-6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(\sqrt{5}+2\right)x=0\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\0+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\frac{2\left(3-\sqrt{5}\right)}{52}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3-\sqrt{5}\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất là \(\left(0;3-\sqrt{5}\right)\)
a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)
Góc tạo bởi thang và mặt đất: \(sin^{-1}\dfrac{3,8}{4}\approx72^0\) (thuộc khoảng an toàn)
Vậy đặt thang như vậy là đủ an toàn
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShift STOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
Sử dụng trên Fx 570ES-Plus
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShiftSTOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
=56.64 nha bn
\(4,15+3,8+33,45+15,24\)
\(=\left(4,15+33,45\right)+3,8+15,24\)
\(=37,6+15,24+3,8\)
\(=52,84+3,8\)
\(=56,64\)