K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)

29 tháng 11 2017

cho mik sửa lại câu

b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

29 tháng 11 2017

b) \(2y-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

\(=\dfrac{2y\left(3x+2y\right)}{3x+2y}-\dfrac{6xy+2y}{3x+2y}+\dfrac{2y-9x^2}{3x+2y}\)

\(=\dfrac{2y\left(3x+2y\right)-\left(6xy+2y\right)+\left(2y-9x^2\right)}{3x+2y}\)

\(=\dfrac{6xy+4y^2-6xy-2y+2y-9x^2}{3x+2y}\)

\(=\dfrac{4y^2-9x^2}{3x+2y}\)

\(=\dfrac{-\left(9x^2-4y^2\right)}{3x+2y}\)

\(=\dfrac{-\left[\left(3x\right)^2-\left(2y\right)^2\right]}{3x+2y}\)

\(=\dfrac{-\left(3x-2y\right)\left(3x+2y\right)}{3x+2y}\)

\(=-\left(3x-2y\right)\)

\(=-3x+2y\)

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha