K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

Ta có 31994 + 31993 - 31992

= 31992(32 + 3 - 1)

= 31992.11 \(⋮\)11 (đpcm)

19 tháng 7 2021

Bạn tham khảo :

31994 + 31993 - 31992 = 31992 ( 32 + 3 - 1 ) = 31992 . 11 \(⋮\)11

=> đpcm

Nguồn : h.o.c24.vn

31 tháng 8 2016

Có: \(3^{1994}+3^{1993}-3^{1992}=3^{1992}\left(3^2+3-1\right)=11\cdot3^{1992}\)

=>đpcm

13 tháng 7 2017

mình cũng thấy vậy là đúngok

14 tháng 7 2021

Đặt A = 31994 + 31993 - 31992

= 31992(32 + 3 - 1) 

= 31992 . 11 \(⋮\)11

=> A \(⋮\)11

9 tháng 8 2018

a)   \(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.11\)     \(⋮\)\(11\)

b) \(4^{13}+32^5-8^8=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}=2^{24}.\left(2^2+1-1\right)=2^{24}.5\)\(⋮\)\(5\)

p/s: chúc bạn học tốt

23 tháng 7 2015

 

a.2014100  + 201499

=201499.(2014+1)

=201499.2015

=> 2014100  + 201499 chia hết cho 2015

 b.31994 + 31993   31992 

=31992.(32+3-1)

=31992.11

=>31994 + 31993   31992 chia hết cho 11

c. 413 _ 325 _ 88

=(22)13-(25)5-(23)8

=226-225-224

=224.(22-2-1)

=224.5

=> 413 _ 325 _ 8chia hết cho 5

a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)

b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)

c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)

Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5

Chúc bạn học tốt

30 tháng 9 2015

51994 + 51993 - 51992 =51992(52+5-1)=51992.29 chia het cho 29

=> 51994 + 51993 - 51992 chia hết cho 29 

30 tháng 9 2015

=\(5^{1992}\left(5^2+5-1\right)\)

=\(5^{1992}\cdot29\)

mà 29 chia hết cho 29 => \(5^{1992}\cdot29\) chia hết cho 29

Vậy ....

1992 đồng dư với 4 (mod 7)

\(1992^3\) đồng dư với 1 (mod 7)

=> \(\left(1992^3\right)^{664}\)đồng dư với \(1^{664}\) và đồng dư với 1 (mod 7)

1994 đồng dư với 6 (mod 7)

\(1994^2\) đồng dư với 1 (mod 7)

=> \(\left(1994^2\right)^{997}\)đồng dư với \(1^{997}\) và đồng dư với 1 (mod 7)

\(1992^{1993}+1994^{1995}\)

\(=1992.\left(1992^3\right)^{664}+1994.\left(1994^2\right)^{997}\)

\(=4.1+6.1=24\)

Vậy số dư là 24

22 tháng 1 2018

Vấn đề Nguyệt muốn hỏi là tại sao tự dưng bạn phía trên lại có thể làm ra như vậy khi số dư 24 lớn hơn số chia ~ :)