K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

a, \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)

\(\Leftrightarrow x^2+6x+9-x^2+4=11\Leftrightarrow6x+2=0\Leftrightarrow x=-\frac{1}{3}\)

b, \(x^2-6x-7=0\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\Leftrightarrow x=-1;x=7\)

c, \(\left(2x+1\right)^2-\left(3x-2\right)^2=0\Leftrightarrow\left(-x+3\right)\left(5x-1\right)=0\Leftrightarrow x=\frac{1}{5};x=3\)

30 tháng 7 2021

x=3 nha

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

a) Ta có: \(\left(2x-4\right)\left(3x+1\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(3x+1\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot7x=0\)

Vì 7≠0

nên \(\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;2}

b) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot3x=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;-2}

c) Ta có: \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

d) Ta có: \(x^3-6x^2+9x=0\)

\(\Leftrightarrow x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: x∈{0;3}

k) Ta có: \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2+1\ge1>0\forall x\)(2)

Từ (1) và (2) suy ra x+3=0

hay x=-3

Vậy: x=-3

17 tháng 4 2023

cái bài a) thì số 2 đâu ra thế bạn?

<=>(x−2)[2(3x+1)+(x−2)]=0

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

11 tháng 12 2016

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )

\(\Leftrightarrow x=2\)

b) \(2x^3+x^2-6x=0\)

\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)

\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)

c) \(4x^2+4xy+x^2-2x+1+y^2=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)

14 tháng 1 2018

Bài 1:

1,\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right).x^2\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right).x^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{5}{3};-2\right\}\)

2,\(2x^2-x=3-6x\)

\(\Leftrightarrow2x^2-x-3+6x=0\)

\(\Leftrightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{2};-3\right\}\)

3,\(x^3+2x^2+x+2=0\)

\(\Leftrightarrow x^2\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;-2\right\}\)

14 tháng 1 2018

4.\(x^3+2x^2-x-2=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{1;-2\right\}\)

Nản quá không làm nữa đâu.Sorry