Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
a.\(2^6.2^n=2^{11}\)
\(2^{6+n}=2^{11}\)
\(\Rightarrow n=5\)
b. \(3^7:3^n=3^4\)
\(3^{7-n}=3^4\)
\(\Rightarrow n=3\)
c.\(2^n.32=2^{10}\)
\(2^{n+5}=2^{10}\)
\(\Rightarrow n=5\)
1) \(\left(-27\right).\left(-28+128\right)=-27.100=-2700\)
2a)\(\left(x-3\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
b) \(\left(2x-1\right)^2=81\)
\(\sqrt{\left(2x-1\right)^2}=9\)
\(\left|2x-1\right|=9\)
\(\left[{}\begin{matrix}2x-1=9\\2x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
c) \(\left(2m+5\right)^3=-27\)
\(\sqrt[3]{\left(2m+5\right)^3}=-3\)
\(2m+5=-3\)
\(m=-4\)
d) \(\left(3x-2\right)^3=64\)
tương tự câu c
a/ \(27^{11}=\left(3^3\right)^{11}=3^{33}\); \(81^8=\left(3^4\right)^8=3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)
b/ \(3^{2n}=\left(3^2\right)^n=9^n\); \(2^{3n}=\left(2^3\right)^n=8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)
a. 2711= (33)11 = 333
818 = (34)8 = 332
Suy ra 333>332 hay 2711>818
b. 32n = (32)n = 9n
23n = (23)n = 8n
Mà 9>8 suy ra 9n>8n hay 32n>23n
c. 523 = 522 . 5
(6.5)22 = 622 . 522
Vì 622>5 suy ra 522 . 5<622 . 522 hay 523<(6.5)22
d. 7245-7244 = 7244(72-1) = 7244 . 71
7244-7243 = 7243(72-1) = 7243 . 71
Vì 7244>7243 suy ra 7244 . 71>7243 . 71 hay 7245-7244>7244-7243
a, \(\frac{6^5\cdot27^2}{7^3\cdot9^5}=\frac{2^5\cdot3^5\cdot\left(3^3\right)^2}{7^3\cdot\left(3^2\right)^5}=\frac{2^5\cdot3^5\cdot3^6}{7^3\cdot3^{10}}=\frac{2^5\cdot3^{11}}{7^3\cdot3^{10}}=\frac{2^5\cdot3}{7^3}\)
b, \(\frac{12^7\cdot9^3}{8^5\cdot27^3}=\frac{3^7\cdot2^{12}\cdot3^6}{2^{15}\cdot3^9}=\frac{2^{12}\cdot3^{13}}{2^{15}\cdot3^9}=\frac{3^4}{2^3}\)
c, \(\frac{20^6\cdot8^2}{16^3\cdot25^3}=\frac{2^{12}\cdot5^6\cdot2^6}{2^{12}\cdot5^6}=2^6\)
giúp
`3^(n+2) : 27 = 3`
`<=> 3^(n+2) : 3^3 = 3^1`
`<=> 3^(n+2-3) = 3^1`
`<=> n + 2 - 3 = 1`
`<=> n - 1 = 1`
`<=> n = 2`
Vậy `n = 2`