K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

2x3 - x2 + x + 1 = 0

<=> 2x3 + 2  - x2 + x - 1 = 0

<=> 2(x3 + 1) - (x2 - x + 1) = 0

<=> 2(x + 1)(x2 - x + 1) - (x2 - x + 1) = 0

<=> (x2 - x + 1)[2(x + 1) - 1)] = 0

<=> (x2 - x + 1)(2x + 1) = 0

<=> 2x + 1 = 0 (Vì x2 - x + 1 > 0 \(\forall x\inℝ\))

<=> x = -1/2 

Vậy x = -1/2 là nghiệm phương trình

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

NV
7 tháng 9 2020

a/

\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow x=1\)

b/

\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)

\(\Leftrightarrow-10x=0\)

\(\Leftrightarrow x=0\)

c/

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)

\(\Leftrightarrow3x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

NV
7 tháng 9 2020

c/

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=-\frac{5}{3}\)

d/

\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)

\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)

\(\Leftrightarrow5x=6\)

\(\Leftrightarrow x=\frac{6}{5}\)

22 tháng 8 2017

a)\(x^2+3x+6=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)

  \(\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)

      \(\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)

             Vì bình phương luôn lớn hơn hoặc bằng 0

                    Nên PT vô nghiệm

b)\(x^2-2x-3=0\)

   \(x^2-3x+x-3=0\)

    \(\left(x+1\right)\left(x-3\right)=0\)

            \(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

                            

22 tháng 8 2017

d)\(x^3-2x^2-x+2=0\)

   \(x^2\left(x-2\right)-\left(x-2\right)=0\)

    \(\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

        \(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

              x - 2 = 0                   x=2

c)\(2x^2+7x+3=0\)

    \(2x^2+x+6x+3=0\)

    \(x\left(2x+1\right)+3\left(2x+1\right)=0\)

     \(\left(2x+1\right)\left(x+3\right)=0\)

          \(\Rightarrow\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)

31 tháng 12 2017

a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)

Vậy \(x=\dfrac{26}{7}\)

b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)

g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(x=3\)

__________________________Chúc bạn học tốt____________________________

1 tháng 1 2018

Thankshihi

a) Ta có: \(\left(2x-4\right)\left(3x+1\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(3x+1\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot7x=0\)

Vì 7≠0

nên \(\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;2}

b) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot3x=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;-2}

c) Ta có: \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

d) Ta có: \(x^3-6x^2+9x=0\)

\(\Leftrightarrow x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: x∈{0;3}

k) Ta có: \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2+1\ge1>0\forall x\)(2)

Từ (1) và (2) suy ra x+3=0

hay x=-3

Vậy: x=-3

17 tháng 4 2023

cái bài a) thì số 2 đâu ra thế bạn?

<=>(x−2)[2(3x+1)+(x−2)]=0

4 tháng 12 2018

Câu e) là: 2x3 + 6x2 = x2 + 3x nhé

4 tháng 12 2018

a) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

b) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\)

\(\Rightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\3x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

d) \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

e) \(2x^3+6x^2=x^2+3x\)

\(\Rightarrow2x^3+6x^2-x^2-3x=0\)

\(\Rightarrow2x^3+5x^2-3x=0\)

\(\Rightarrow x\left(2x^2+5x-3\right)=0\)

\(\Rightarrow2x^2+5x-3=0\)

\(\Rightarrow2x^2-6x+x-3=0\)

\(\Rightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

f) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)-2x^2\)

\(\Rightarrow\left(x^2-1\right)\left(x+2\right)-\left(x^3-8\right)-2x^2=0\)

\(\Rightarrow x^3+2x^2-x+2-x^3+8-2x^2=0\)

\(\Rightarrow-x+10=0\)

\(\Rightarrow x=10\)

14 tháng 8 2016

a) \(\left(y-1\right)^2=9\)

\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)

\(\Rightarrow x-1=3\Rightarrow x=4\)

\(\Rightarrow x-1=-3\Rightarrow x=-2\)

Vậy: \(x=4\) hoặc \(-2\)

14 tháng 8 2016

\(\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4\right)^2=25\)

\(\Rightarrow\left(x-4\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow x-4=5\Rightarrow x=9\)

\(\Rightarrow x-4=-5\Rightarrow x=-1\)

Vậy: \(x=9\) hoặc \(-1\)

14 tháng 9 2019

a) \(x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)

\(TH1:x+1=0\Leftrightarrow x=-1\)

\(TH2:x^2+x+1=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)

Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)nên loại TH2

Vậy x = 1

14 tháng 9 2019

Câu a), x = -1 nha, kết luận nhầm

b) \(x^3-4x^2+12x-27=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+9\right)-4x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-7x+9\right)=0\)

\(TH1:x-3=0\Leftrightarrow x=3\)

\(TH2:x^2-7x+9=0\)

\(\cdot\Delta=\left(-7\right)^2-4.9=13\)

Vậy pt của TH2 có 2 nghiệm phân biệt

\(x_1=\frac{7+\sqrt{13}}{2}\);\(x_2=\frac{7-\sqrt{13}}{2}\)

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

17 tháng 6 2017

\(a,x^4-16x^2+32x-16=0\)

\(\Leftrightarrow\left(x^4-16\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^4+4\right)\left(x-2\right)\left(x+2\right)-16x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x-4x+8\right)=0\)\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+4x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2\left[\left(x+2\right)^2-8\right]=0\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{8}\\x+2=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}-2\\x=-\sqrt{8}-2\end{matrix}\right.\)

17 tháng 6 2017

câu nào dễ xơi trước

g) \(x^3+3x^2-2x-6=0\Leftrightarrow x^2\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x+3\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{2}\\x=-3\end{matrix}\right.\)

kl: ...........