K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha

18 tháng 8 2017

a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)

b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

c)\(-2\left(x-4\right)\left(2x+1\right)\)

d)\(\left(x-5\right)\left(4x+1\right)\)

e)\(3\left(x-2\right)\left(3x-2\right)\)

g)\(2\left(a-b\right)^2\)

h)\(\left(xy-3\right)\left(5y^2-2z\right)\)

i)\(\left(4x+1\right)\left(2x-y\right)\)

l)\(abc^2\left(b-a\right)\left(b+c\right)\)

m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

18 tháng 9 2017

a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại 

            A=...............

= (3x+5)2 + ( 3x-5)- 9x2 -4

= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4

= 9x2 +30x + 25 + 9x-30x+25-9x2 -4

= 9x2 + 46

sai thì thôi nhé. bạn nên kiểm tra lại

d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x+1) - 5

= 8x3 -1 - 8x-8x-5

= -8x-6

= -2(4x+3)

sai nhé. bạn nên kiểm tra lại 

21 tháng 6 2017

Hỏi gì mà nhiều thế

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến

a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21\)

=-74

Vậy: Đa thức A không phụ thuộc vào biến(đpcm)

b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

\(=-8\)

Vậy: Đa thức B không phụ thuộc vào biến(đpcm)

c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)

Vậy: Đa thức C không phụ thuộc vào biến(đpcm)

d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)

\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)

=0

Vậy: Đa thức D không phụ thuộc vào biến(đpcm)

26 tháng 7 2017

\(a,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(b,\left(x^2-3\right)\left(x^4+3x^2+9\right)=x^6-27\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

\(d,\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)

\(e,\left(5+3x\right)^3=125+225x+135x^2+27x^3\)

a: \(=\left(2x-y\right)\left(x+y+3x-y\right)+\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x+1\right)\)

b: \(=abc\left(b^2c-abc+bc^2-a\right)\)

d: \(=x^2\left(2x+3\right)+2x+3=\left(2x+3\right)\left(x^2+1\right)\)

25 tháng 7 2015

rút gọn các đa thức bằng cách nhân chúng với nhau rồi thay số vào là tính được mà