Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}\)
=\(\left(\sqrt{4}\sqrt{7}-\sqrt{7}-\sqrt{12}\right).3+2\sqrt{21}\)
=\(\left(2\sqrt{7}-\sqrt{7}-\sqrt{4}\sqrt{3}\right).3+2\sqrt{21}\)
=\(\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}\)
=\(3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)
đề có sai ko nhưng kết quả ra thế
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right).3+2\sqrt{21}=\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}=3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)
1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)
2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)
a: \(P=\dfrac{\left(\sqrt{x^2+1}\right)^2+5\sqrt{x^2+1}+6}{\sqrt{x^2+1}+3}+\dfrac{\left(\sqrt{x^2+1}^2\right)+7\sqrt{x^2+1}+12}{\sqrt{x^2+1}+4}\)
\(=\sqrt{x^2+1}+2+\sqrt{x^2+1}+3\)
\(=2\sqrt{x^2+1}+5\)
b: Để P=11 thì \(2\sqrt{x^2+1}=11-5=6\)
=>căn (x^2+1)=3
=>x^2+1=9
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
Điều kiện : x>=0
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
Ta có:
\(\dfrac{\sqrt{21}+\sqrt{7}}{1+\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\\ =\dfrac{\sqrt{7}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}-\dfrac{\sqrt{7^2}-2^2}{\sqrt{7}-2}\\ =\dfrac{\sqrt{7}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}-\dfrac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}{\sqrt{7}-2}\\ =\sqrt{7}-\left(\sqrt{7}+2\right)\\ =-2\)