K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2022

Ta có:

\(\dfrac{\sqrt{21}+\sqrt{7}}{1+\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\\ =\dfrac{\sqrt{7}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}-\dfrac{\sqrt{7^2}-2^2}{\sqrt{7}-2}\\ =\dfrac{\sqrt{7}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}-\dfrac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}{\sqrt{7}-2}\\ =\sqrt{7}-\left(\sqrt{7}+2\right)\\ =-2\)

8 tháng 7 2015

\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}\)

=\(\left(\sqrt{4}\sqrt{7}-\sqrt{7}-\sqrt{12}\right).3+2\sqrt{21}\)

=\(\left(2\sqrt{7}-\sqrt{7}-\sqrt{4}\sqrt{3}\right).3+2\sqrt{21}\)

=\(\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}\)

=\(3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)

đề có sai ko nhưng kết quả ra thế

8 tháng 7 2015

\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{9}+2\sqrt{21}=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right).3+2\sqrt{21}=\left(\sqrt{7}-2\sqrt{3}\right).3+2\sqrt{21}=3\sqrt{7}-6\sqrt{3}+2\sqrt{21}\)

8 tháng 8 2016

1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)

2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)

10 tháng 9 2016

1.139852281

a: \(P=\dfrac{\left(\sqrt{x^2+1}\right)^2+5\sqrt{x^2+1}+6}{\sqrt{x^2+1}+3}+\dfrac{\left(\sqrt{x^2+1}^2\right)+7\sqrt{x^2+1}+12}{\sqrt{x^2+1}+4}\)

\(=\sqrt{x^2+1}+2+\sqrt{x^2+1}+3\)

\(=2\sqrt{x^2+1}+5\)

b: Để P=11 thì \(2\sqrt{x^2+1}=11-5=6\)

=>căn (x^2+1)=3

=>x^2+1=9

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

24 tháng 9 2017

\(\left(\sqrt{5}-\sqrt{7}\right)^2\)=\(\sqrt{5^2}-\sqrt{7^2}\)=\(5-7=-2\)

16 tháng 5 2019

a,

(2 - â3)â26 + 15â3 - (2 + â3)â26 - 15â3,Toán há»c Lá»p 9,bà i tập Toán há»c Lá»p 9,giải bà i tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

b,

Tính B = (1/cÄn3 + 1/3cÄn2 + 1/cÄn3 * cÄn(5/12 - 1/6)) * 1/3,Toán há»c Lá»p 9,bà i tập Toán há»c Lá»p 9,giải bà i tập Toán há»c Lá»p 9,Toán há»c,Lá»p 9

9 tháng 1 2016

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)