Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ thế này bạn à:
PT1: \(x^2+2013x+2=0.\)Theo Hệ thức Vi-ét ta có: \(x_1+x_2=-2013\\ x_1.x_2=2\)
Tương tự với PT2 ta có:\(x_3+x_4=-2014\\ x_3.x_4=2\)
\(Q=\left[\left(x_1+x_3\right)\left(x_2-x_4\right)\right]\left[\left(x_2_{ }-x_3\right)\left(x_1+x_4\right)\right]\)
\(Q=\left(x_1.x_2+x_2.x_3-x_1.x_4-x_3.x_4\right)\left(x_1.x_2+x_2.x_4-x_1.x_3-x_3.x_4\right)\)
\(Q=\left(2+x_2.x_3-x_1.x_4-2\right)\left(2+x_2.x_4-x_1.x_3-2\right)\)
\(Q=\left(x_2.x_3-x_1.x_4\right)\left(x_2.x_4-x_1.x_3\right)\)
\(Q=x_2.x_3.x_4-x_3.x_1.x_2-x_4.x_1.x_2+x_1.x_3.x_4\)
\(Q=2x_2-2x_3-2x_4+2x_1\)
\(Q=2\left(x_1+x_2\right)-2\left(x_3+x_4\right)\)
\(Q=2.\left(-2013\right)-2.\left(-2014\right)\)
\(Q=2\)
Bài này hay quá. Chúc bạn học tốt nhé
\(\left\{{}\begin{matrix}x_1+x_2=-2019\\x_1x_2=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_3+x_4=-2020\\x_3x_4=2\end{matrix}\right.\)
\(Q=\left(x_1+x_3\right)\left(x_1+x_4\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\)
\(Q=\left(x_1^2+x_1x_4+x_1x_3+x_3x_4\right)\left(x_2^2-x_2x_4-x_2x_3+x_3x_4\right)\)
\(Q=\left(x_1^2+x_1\left(x_3+x_4\right)+x_3x_4\right)\left(x_2^2-x_2\left(x_3+x_4\right)+x_3x_4\right)\)
\(Q=\left(x_1^2-2020x_1+2\right)\left(x_2^2+2020x_2+2\right)\)
Mặt khác do \(x_1\); \(x_2\) là nghiệm của \(x^2+2019x+2=0\) nên:
\(\left\{{}\begin{matrix}x_1^2+2019x_1+2=0\\x_2^2+2019x_2+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2+2=-2019x_1\\x_2^2+2=-2019x_2\end{matrix}\right.\)
\(\Rightarrow Q=\left(-2019x_1-2020x_1\right)\left(-2019x_2+2020x_2\right)\)
\(Q=-4039x_1.x_2=-4039.2=-8078\)
a.
Ta co:
\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)
(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)
(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)
b.
Ta lai co:
\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)
Xet (3)
De phuong trinh dau co 4 nghiem thi PT(3) co nghiem
\(\Rightarrow\Delta^`>0\)
\(\Leftrightarrow4a^2>0\)
\(\Leftrightarrow a>0\)
\(\Rightarrow x_1=1+2a;x_2=1-2a\)
Tuong tu
(4)
\(a>0\)
\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)
\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)
\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)
\(\Rightarrow S< +\infty\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)
Đặt \(x^2+4x-5=t\ge-9\)
\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)
Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)
Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)
Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)
\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)
\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)
\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)
\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)
Phương trình tương đương:
\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)
\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)
Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.
\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)
Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)
Nghiệm của chúng lần lượt là:
\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)
Lần lượt thay nghiệm vào điều kiện:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V
1. ĐỀ THIẾU MẸ AK
câu nào, nếu là câu 1 thì k phải đâu, mẹ tính ra r con ạ =D