\(\dfrac{2}{2.5}\)\(+\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)

20 tháng 3 2017

Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)

\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)

\(\Rightarrow A=\dfrac{36}{49}\)

7 tháng 7 2017

3/ Chu vi hình chữ nhật:

\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)

Diện tích hình chữ nhật:

\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)

7 tháng 7 2017

Đơn vị trong ngoặc ghi là đơn vị diện tích nhá!

3 tháng 7 2017

a) Để phân số \(\dfrac{12}{n}\) có giá trị nguyên thì :

\(12⋮n\)

\(\Leftrightarrow n\inƯ\left(12\right)\)

\(\Leftrightarrow n\in\left\{-1;1;-12;12;-2;2;-6;6;-3;3;-4;4\right\}\)

Vậy \(n\in\left\{-1;1;-12;12;-2;2-6;6;-3;3;-4;4\right\}\) là giá trị cần tìm

b) Để phân số \(\dfrac{15}{n-2}\) có giá trị nguyên thì :

\(15⋮n-2\)

\(\Leftrightarrow x-2\inƯ\left(15\right)\)

Tới đây tự lập bảng zồi làm típ!

c) Để phân số \(\dfrac{8}{n+1}\) có giá trị nguyên thì :

\(8⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(8\right)\)

Lập bảng rồi làm nhs!

6 tháng 5 2017

giúp mik đi năn nỉ đóbucminh

8 tháng 5 2017

dễ mà

5 tháng 7 2017

\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)

\(\Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\)

\(6x-42=7y-42\)

\(6x=7y\Leftrightarrow x=\dfrac{7}{6}y\)

\(x=-4:\left(7-6\right).7=-28\)

\(y=-28-4=-24\)

b tương tự

5 tháng 7 2017

Giải:b)

\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\) nên \(6\left(x-7\right)=7\left(y-6\right)\)

Do đó \(6x-42=7y-42\) nên \(6x=7y\)

Suy ra \(6x-6y=y\) hay \(6\left(x-y\right)=y\)

Nên 6.(-4) = y

Vậy y = -24, x = \(\dfrac{7.\left(-24\right)}{6}\)= -28

c)

\(\dfrac{x+3}{y+5}=\dfrac{3}{5}\) nên \(5\left(x+3\right)=3\left(y+5\right)\)

Do đó \(5x+15=3y+15\) nên \(5x=3y\)

Suy ra \(5x+5y=3y+5y\)

\(5\left(x+y\right)=8y\)

\(5.16=8y\)

Nên \(y=\dfrac{5.16}{8}=\dfrac{80}{8}=10\)

Vậy y = 10, x = 16 - 10 =6

27 tháng 6 2017

a) Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in Z\right)\)

\(\Rightarrow B=\dfrac{5^{12}+2}{5^{13}+2}< 1\)

\(B< \dfrac{5^{12}+2+48}{5^{13}+2+48}\Rightarrow B< \dfrac{5^{12}+50}{5^{13}+50}\Rightarrow B< \dfrac{5^2\left(5^{10}+2\right)}{5^2\left(5^{11}+2\right)}\Rightarrow B< \dfrac{5^{10}+2}{5^{11}+2}=A\)\(B< A\)

27 tháng 6 2017

bạn ơi thế còn phần b thì sao? Mong bạn có câu trả lời sớm tớ cảm ơn bạn nhiều lắm

27 tháng 4 2017

A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)

A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)

A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)

A = \(\dfrac{4}{3}.\dfrac{33}{68}\)

A = \(\dfrac{11}{17}\)

27 tháng 4 2017

1/3.(1/2.5+1.5.8+1/8.11+...+1/65.68)

=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+...+1/65-1/68)

=1/3(1/2-1/68)

=1/3.33/68

=11/68

nhớ theo dõi mik nha

26 tháng 3 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}+\dfrac{1}{2012.2013}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2012}-\dfrac{1}{2013}\)

\(=1-\dfrac{1}{2013}\)

\(\Rightarrow A< 1-\dfrac{1}{2013}\)

\(\Rightarrow A< 1\) ( đpcm )

26 tháng 3 2017

mình gợi ý nè :

Chứng minh A <\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)