Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, a=ƯCLN(128;48;192)
2, b= ƯCLN(300;276;252)
3, Gọi n.k+11=311 => n.k = 300
n.x + 13 = 289 => n.x = 276
=> \(n\inƯC\left(300;276\right)\)
4, G/s (2n+1;6n+5) = d (d tự nhiên)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+1 lẻ => 2n+1 không chia hết cho 2
=> d khác 2 => d=1 => đpcm
5, a,
Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1
=> a+b = a1.6+b1.6 = 6(a1+b1) = 72
=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)
Vì (a1,b1) = 1
=> a1+b1 = 1+11=5+7
* Với a1+b1 = 1+11
+) TH1: a1 = 1; b1=11 => a =6 và b = 66
+) TH2: a1=11; b1=1 => a=66 và b = 6
* Với a1+b1 = 5+7
+)TH1: a1=5 ; b1=7 => a=30 và b=42
+)TH2: a1=7;b1=5 => a=42 và b=30
Vậy.......
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
Gọi 3 số tự nhiên liên tiếp là : \(x;x+1;x+2\left(x\in N\right)\)
Theo bài ra ta có :
\(\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=140\)
\(\Rightarrow x^2+x+2x+2-x^2-x=140\)
\(\Rightarrow2x+2=140\)
\(\Rightarrow2\left(x+1\right)=140\)
\(\Rightarrow x+1=70\)
\(\Rightarrow x=69\)
\(\Rightarrow\hept{\begin{cases}x+1=70\\x+2=71\end{cases}}\)
Vậy 3 số cần tìm là : 69 ; 70 ; 71
b, x2 +y2+z2 +2x-4y-6z+14=0
<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0
<=> (x+1)2+(y-2)2+(z-3)2=0
=>(x+1)2=(y-2)2=(z-3)2=0
=>x+1=y-2=z-3=0
=> x=-1; y=2; z=3
c, 2x2+y2-6x-4y+2xy+5=0
<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0
<=> (x+y-2)2+(x-1)2=0
=> (x+y-2)2=(x-1)2=0
=>x+y-2=x-1=0
=>x=1; y=1