Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
Ta có x = -2 là nghiệm của C (x)
=> \(C\left(-2\right)=0\)
=> \(4m-\left(-2\right)\left(2m-3\right)+7m-5=0\)
=> \(4m-\left(-4m\right)+6+7m-5=0\)
=> \(4m+4m+6+7m-5=0\)
=> \(15m+1=0\)
=> \(15m=-1\)
=> \(m=\frac{-1}{15}\)
Vậy khi \(m=\frac{-1}{15}\)thì x = -2 là nghiệm của C (x).
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
Bài 4:
\(M\left(x\right)=-2x^2+mx-7m+3\)
\(\Rightarrow M\left(-1\right)=-2.\left(-1\right)^2+m.\left(-1\right)-7m+3\)
\(=-2-m-7m+3\)
Mà \(M\left(-1\right)=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-2-8m=-3\)
\(\Rightarrow8m=\left(-2\right)-\left(-3\right)\)
\(\Rightarrow8m=1\)
\(\Rightarrow m=\frac{1}{8}\)
A, \(M\left(-1\right)=0\)
\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)
\(-m-3=0\)
\(m=-3\).
B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)
\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).
A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)
\(M\left(-1\right)=m-2m-3\)
Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)
\(\Rightarrow M\left(-1\right)=0\)
\(\Rightarrow m-2m-3=0\)
\(-m-3=0\)
\(\Rightarrow m=-3\)
Vậy \(m=-3\).
B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)
\(\Rightarrow x\left(2x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1>0\)
\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)
Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).
1/ x^2-2x-3=0
<=> (x - 3)(x+1) = 0
<=> x = 3 hoặc x = -1
2/ x= -2 là nghiệm của C (x) = m (-2)^2 - (2m-3) ( -2) + 7m - 5 = 0
<=> m =11/15
1/ \(x^2\)-2x-3=0
<=> (x - 3)(x+1) = 0
<=> x = 3 hoặc x = -1
2/ x= -2 là nghiệm của C (x) = m (-2)^2 - (2m-3) ( -2) + 7m - 5 = 0
<=> m =\(\dfrac{11}{15}\)