\(\frac{1}{x}+\frac{1}{x-1}=\frac{3}{2}\)

2. Cho bt:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

1: ĐKXĐ: x \(\ne\) 0; 1

\(\frac{1}{x}+\frac{1}{x-1}=\frac{3}{2}\)

\(\Leftrightarrow\frac{2x-1}{x\left(x-1\right)}=\frac{3}{2}\)

\(\Leftrightarrow3x^2-3x=4x-2\)

\(\Leftrightarrow3x^2-7x=-2\)

\(\Leftrightarrow9x^2-21x+12,25=6,25\)

\(\Leftrightarrow\left(3x-3,5\right)^2=6,25\)

\(\Leftrightarrow...\left(tl\right)\)

1 tháng 5 2019

Bài 1:

\(\frac{1}{x}\)+\(\frac{1}{x-1}=\frac{3}{2}\)(x khác 0, x khác 1)

(=)\(\frac{2\left(x-1\right)}{2x\left(x-1\right)}+\frac{2x}{2x\left(x-1\right)}=\frac{3x\left(x-1\right)}{2x\left(x-1\right)}\)

(=)2(x-1)+2x=3x(x-1)

(=)2x-2+2x=3x2-3x

(=)4x-2=3x2-3x

(=)4x-2-3x2+3x=0

(=)-3x2+7x-2=0

(=)-3x2+6x+x-2=0

(=)-3x(x-2)+(x-2)=0

(=)(-3x+1)(x-2)=0

(=)TH1:-3x+1=0

(=)-3x=-1

(=)x=1/3 (TMĐKXĐ)

TH2:x-2=0

(=)x=2 (TMĐKXĐ)

Vậy S={1/3;2}

Bài 2:

a)P=\(\frac{x^2}{x-1}-\frac{2x^2-x}{x^2-x}\)(x≠_+1;x≠0)

=\(\frac{x^2}{x-1}-\frac{2x^2-x}{x\left(x-1\right)}\)

=\(\frac{x^3}{x\left(x-1\right)}-\frac{2x^2-x}{x\left(x-1\right)}\)

=\(\frac{x^3-2x^2+x}{x\left(x-1\right)}\)

=\(\frac{x^3-x^2-x^2+x}{x\left(x-1\right)}\)

=\(\frac{x^2\left(x-1\right)-x\left(x-1\right)}{x\left(x-1\right)}\)

=\(\frac{\left(x-1\right)\left(x^2-x\right)}{x\left(x-1\right)}\)

=\(\frac{\left(x-1\right)x\left(x-1\right)}{x\left(x-1\right)}\)

=x-1

b)P<1

(=)P-1<0

(=)x-1-1<0

(=)x-2<0

(=)x<2

Vậy P<1 với x<2 khi x khác 0 và -1.

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

12 tháng 12 2016

\(A=\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right):\left(-1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x-2}{2\left(x-1\right)}+\frac{3}{2\left(x-1\right)}+\frac{-\left(x+3\right)}{2\left(x+1\right)}\right):\left(-\frac{1}{1}+\frac{-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{-1\left(x+1\right)-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{x^2-x^2+x+3x-2x-6+3+3}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1-x+3}{x+1}\right)\)

=\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}:\frac{2}{x+1}\)

\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}.\frac{x+1}{2}\)

\(=\frac{x}{2\left(x-1\right)}\)

b,Thayx=2005

\(\Rightarrow A=\frac{2005}{4008}\)

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)