Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Có \(\frac{-3}{2}\ne\frac{2}{3}\)( vì \(\frac{-3}{2}\)là số âm; \(\frac{2}{3}\)là số dương )
Mà a \(\in Z\)
\(\Rightarrow a^{\frac{-3}{2}}\ne a^{\frac{2}{3}}\)( đpcm )
a: \(A\left(\dfrac{1}{2}\right)=-2\cdot\dfrac{1}{8}+3\cdot\dfrac{1}{4}+5=\dfrac{11}{2}\)
\(A\left(1\right)=-2+3+5=6\)
\(A\left(-1\right)=2+3+5=10\)
\(A\left(0\right)=-2\cdot0+3\cdot0+5=5\)
\(A\left(-3\right)=-2\cdot\left(-27\right)+3\cdot9+5=86\)
b: Khi x=2 và y=1 thì
\(B=-3\cdot8\cdot1+2\cdot4-2\cdot2=-20\)
Khi x=-2 và y=1 thì
\(B=-3\cdot\left(-8\right)\cdot1+2\cdot4-2\cdot\left(-2\right)=36\)
câu b nha
B= 1/100 - (1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99)
B=1/100 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - ... - 1/99 + 1/99 - 1/100)
B=1/100-(1-1/100)
B=1/100-99/100
B= - 98/100
B= - 49/50
đ ú g nha
\(\frac{1.3.5...79}{2.4.6...80}\)= \(\frac{1.3.5...79}{\left(1.2\right).\left(2.2\right).\left(3.2\right)...\left(40.2\right)}\).\(\frac{1.3.5...79}{\left(1.2.3.4...40\right).\left(2.2.2.2...2.2\right)}\)=\(\frac{1.3.5...79}{\left(1.3.5...39\right).\left(2.4.6...40\right).2^{40}}\)<1/9