\(^0\) AB=11cm  , AD=12cm, BC=13cm. Tính AC

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1)

a) Vì A: B:C:D = 1:2:3:4

=> A= B/2 = C/3=D/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A = 36 độ

B= 72 độ

C=108 độ

D= 144 độ

b) Ta có :

A + D = 36 + 144 = 180 độ(1)

B+C = 72 + 108 = 180 độ(2)

Từ (1) và (2) ta có:

=> AB //CD (dpcm)

c) Ta có :

CDE + ADC = 180 độ(kề bù) 

=> CDE = 180 - 144 = 36

Ta có :

BCD + DCE = 180 độ ( kề bù) 

=> DCE = 180 - 108 = 72 

Xét ∆CDE ta có :

CDE + DCE + DEC = 180 (  tổng 3 góc trong ∆)

=> DEC = 180 - 72 - 36 = 72 độ 

Bài 2) 

a) Ta có ABCD có : 

A + B + C + D = 360 độ

Mà C = 80 độ

D= 70 độ

=> A+ B = 360 - 80 - 70 = 210 độ

Ta có AI là pg  góc A 

BI là pg góc B 

=> DAI = BAI = A/2 

=> ABI = CBI = B/2

=> BAI + ABI = A + B /2 

=> BAI + ABI = 210/2 = 105

Xét ∆IAB ta có :

IAB + ABI + AIB = 180 độ

=> AIB = 180 - 105

=> AIB = 75 độ

=> 

27 tháng 10 2023

Xét ΔICD có \(\widehat{CID}+\widehat{ICD}+\widehat{IDC}=180^0\)

=>\(\widehat{ICD}+\widehat{IDC}=180^0-115^0=65^0\)

=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=65^0\)

=>\(\widehat{ADC}+\widehat{BCD}=130^0\)

Xét tứ giác ABCD có

\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{A}+\widehat{B}=360^0-130^0=230^0\)

mà \(\widehat{A}-\widehat{B}=50^0\)

nên \(\widehat{A}=\dfrac{230^0+50^0}{2}=140^0\)

\(\widehat{A}-\widehat{B}=50^0\)

=>\(140^0-\widehat{B}=50^0\)

=>\(\widehat{B}=140^0-50^0=90^0\)