Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+) (m + 2)x ≤ m + 1
+) 3m(x - 1) ≤ -x - 1 ⇔ 3mx - 3m + x + 1 ≤ (3m + 1)x ≤ 3m - 1
Hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương khi và chỉ khi hai bất phương trình có cùng tập nghiệm khi đó:
⇔ (m + 1)(3m + 1) = (m + 2)(3m - 1)
⇔ 3 m 2 + m + 3m + 1 = 3 m 2 - m + 6m - 2
⇔ 3 m 2 + m + 3m + 1 - 3 m 2 + m - 6m + 2 = 0
⇔ -m + 3 = 0
⇔ m = 3 (thỏa mãn)
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)
=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)
\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)
X2- mx+1 <0
\(\Delta\)= (-m)2 -4.1.1
\(\Delta\)= m -4
để BPT trên có nghiệm khi \(\Delta\)<0
Tức là: m-4<0
m<4
Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x
Chọn A.
Bất phương trình ( m 2 + m + 1)x - 5m ≥ ( m 2 + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi
Chọn B
TH1.Nếu a-1=0 hay a =1 thì
(1) thành: 2 > 0 ( luôn đúng mọi x) Tập nghiệm của bất phương trình T = R
(2) thành: 2x+1> 0 hay x> -1/2 Tập nghiệm của bất phương trình
Vậy a= 1 không thỏa yêu cầu bài toán.
TH2. Nếu a+1= 0 hay a= -1thì
(1) thành: -2x=4>0 hay x< 2. Tập nghiệm của bất phương trình T2 = (-∞; 2)
(2) thành: 3> 0 luôn đúng Tập nghiệm của bất phương trình T= R
Vậy a= -1 không thỏa yêu cầu bài toán.
TH3.
(1) : (a-1) x> a-3 và (2) : (a+1) x> a-2
Hai bất phương trình tương đương