K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

12,3.y+y.26,7=191,88

y.(12,3+26,7)=191,88

y.39=191,88

y=191,88:39

y=4,92

AH
Akai Haruma
Giáo viên
29 tháng 11 2022

Lời giải:

$12,3\times y+y\times 26,7=191,88$

$y\times (12,3+26,7)=191,88$

$y\times 39=191,88$

$y=191,88:39=4,92$

21 tháng 1 2021

a) Phương trình hoành độ giao điểm f(x) =  X- x - 2 =0 ⇔ x = -1 hoặc x = 2.

Diện tích hình phẳng cần tìm là :

    

    

b) Phương trình hoành độ giao điểm: 

f(x) = 1 - ln|x| = 0  ⇔ lnx = ± 1

⇔ x = e hoặc                                                       

        y = ln|x| = lnx nếu lnx ≥ 0 tức là x ≥ 1.

 hoặc  y = ln|x| = - lnx nếu x < 0, tức là 0 < x < 1.

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

    

     

     

Ta có  ∫lnxdx = xlnx - ∫dx = xlnx  –  x  + C,  thay vào trên ta được  :

 

    

c) Phương trình hoành độ giao điểm là:

f(x) = 6x  –  x2 – (x - 6)2  = -2(x2 – 9x +18)

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

Nguyên hàm, tích phân và ứng dụng

5 tháng 5 2016

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh

 

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

19 tháng 2 2017

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

4 tháng 9 2017

Có: (x+y+z)3 = (x+y)3 + z3 + 3z(x+y)(x+y+z)

= x3 + y3 + z3 + 3xy(x+y) + 3z(x+y)(x+y+z)

= x3 + y3 + z3 + 3(x+y)[xy+z(x+y+z)]

= x3 + y3 + z3 + 3(x+y)(xy+xz+yz+z2)

= x3 + y3 + z3 + 3(x+y)[x(y+z)+z(z+y)]

= x3 + y3 + z3 + 3(x+y)(y+z)(x+z) (đpcm)

8 tháng 5 2016

Ta có :

\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)

Theo bất đẳng thức Cô-si ta có :

\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)

Vì \(x+y+z=1\) nên có 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)

Thế vào (1) ta có :

\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)

Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)