Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco:\frac{n^3-1}{n^3+1}=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\frac{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}{\left(n+1\right)\left[\left(n-0,5\right)^2+0,75\right]}\)
Do đó:
\(A=\frac{\left(2-1\right)\left(2,5^2+0,75\right)}{\left(2+1\right)\left(1,5^2+0,75\right)}\frac{\left(3-1\right)\left(3,5^2+0,75\right)}{\left(3+1\right)\left(2,5^2+0,75\right)}.....\frac{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}{\left(n+1\right)\left[\left(n-0,5\right)^2+0,75\right]}\)
\(=\frac{1.2.3....\left(n-1\right)}{3.4.5...\left(n+1\right)}.\frac{\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)\left(4,5^2+0,75\right)...\left[\left(n+0,5\right)^2+0,75\right]}{\left(1,5^2+0,75\right)\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)....\left[\left(n-0,5\right)^2+0,75\right]}\)
\(=\frac{1.2}{n\left(n+1\right)}.\frac{\left(n+0,5\right)^2+0,75}{1,5^2+0,75}=\frac{2\left(n^2+n+1\right)}{3n\left(n+1\right)}\)
ta có :
n(N+1) là tích 2 số liên tiếp
=> 1 trong 2 số là số chẵn chia hết cho 2
đó là chia hết cho 2
=N+2
N ở đây là biểu diễn một số nào đó
N là môt số bất kỳ