Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tứ giác có hai đường chéo vuông góc với nhau bằng nữa tích hai đường chéo
=> Sabcd=(15*12)/2=90
ta có
\(S=\frac{1}{10}+\frac{1}{20}+\frac{1}{35}+\frac{1}{56}+\frac{1}{84}+\frac{1}{120}+\frac{1}{165}+\frac{1}{220}\)
\(=6\left(\frac{1}{3\cdot4\cdot5}+\frac{1}{4\cdot5\cdot6}+\frac{1}{6\cdot7\cdot8}+\frac{1}{8\cdot9\cdot10}+\frac{1}{10\cdot11\cdot12}\right)\)
\(=3\left(\frac{1}{3\cdot4}-\frac{1}{11\cdot12}\right)=\frac{5}{22}\)
Bạn không đăng những câu hỏi mà mình biết trên diễn đàn !
\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)
\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc
\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)
\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)
\(\frac{y-1}{2}=\frac{y-0,5}{5}\)
\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)
Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc
\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)
1) \(\sqrt{-2x+3}\) có nghĩa khi:
\(-2x+3\ge0\)
\(\Leftrightarrow-2x\ge-3\)
\(\Leftrightarrow2x\le3\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
2) \(\sqrt{-5x}\) có nghĩa khi:
\(-5x\ge0\)
\(\Leftrightarrow x\le0\)
3) \(\sqrt{\dfrac{x}{3}}\) có nghĩa khi:
\(\dfrac{x}{3}\ge0\)
\(\Leftrightarrow x\ge\dfrac{0}{3}\)
\(\Leftrightarrow x\ge0\)
4) \(\sqrt{1+x^2}\)
Mà: \(x^2\ge0\Rightarrow1+x^2\ge1>0\)
\(\sqrt{1-x^2}\) được xác định \(\forall x\)
5) \(\sqrt{\dfrac{4}{x+3}}\) có nghĩa khi:
\(\dfrac{4}{x+3}\ge0\) và \(x+3\ne0\)
Mà: \(4>0\)
\(\Leftrightarrow x+3>0\)
\(\Leftrightarrow x>-3\)
6) \(\sqrt{\dfrac{-5}{x^2+6}}\)
Mà: \(-5< 0\)
\(x^2+6\ge6>0\forall x\)
\(\Rightarrow\dfrac{-5}{x^2+6}\le-\dfrac{5}{6}< 0\forall x\)
Biểu thức này không được xác định
7) \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa khi:
\(\dfrac{1}{x-1}\ge0;x-1\ne0\)
Mà: 1 > 0
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
8) \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa khi:
\(\dfrac{2}{x^2}\ge0;x\ne0\)
\(\Leftrightarrow x\ne0\)
9) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x-1\right)^2}\)
Mà: \(\left(x-1\right)^2\ge0\forall x\)
Biểu thức được xác định với mọi x
10) \(\sqrt{-x^2-2x-1}\)
\(=\sqrt{-\left(x^2+2x+1\right)}\)
\(=\sqrt{-\left(x+1\right)^2}\)
Mà: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)
Nên biểu thức không được xác định
11) \(\dfrac{1}{\sqrt{4x^2-12x+9}}=\dfrac{1}{\sqrt{\left(2x-3\right)^2}}=\dfrac{1}{\left|2x-3\right|}\)
Có nghĩa khi:
\(2x-3\ne0\)
\(\Leftrightarrow2x\ne3\)
\(\Leftrightarrow x\ne\dfrac{3}{2}\)
12) \(\sqrt{x^2-8x+15}\)
\(=\sqrt{x^2-8x+16+1}\)
\(=\sqrt{\left(x-4\right)^2+1}\)
Mà: \(\left(x-4\right)^2+1\ge1>0\forall x\)
Biểu thức được xác định với mọi x
13) \(\sqrt{x-2}+\dfrac{1}{x-5}\) xác định khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
14) \(\sqrt{\dfrac{2+x}{5-x}}\) có nghĩa khi:
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2\\x< 5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2\le x< 5\)
15) \(\sqrt{\dfrac{x-1}{x+2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x>-2\end{matrix}\right.\)
=2 bạn
k mình nhé
mk nhanh nhất
k bạn nha
1+1=2
k đi
k lại