K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

-5 ( x+ 3) = 10075

x+3=-2015

x=-2012

16 tháng 9 2018

10100 - 5 (x + 3) = 25

              5(x + 3) = 10100 - 25

              5(x+ 3 ) = 10075

                  x + 3 = 10075 : 5 = 2015

                        x = 2015 - 3 = 2012

Chúc bạn học tốt!

1 tháng 6 2020

nhanh nha mấy bạn mình đang cần rất gấp

7 tháng 4 2018

15 đó bạn. k cho mọi mik nhé.

4 tháng 5 2018

Hello Triệu Mẫn điên .Tui là Nguyên 6n1^^

Tui đang suy nghĩ 

Tui biết làm nhưng không nói 

chỉ nói kết quả bằng 10

4 tháng 5 2018

Nguyên trả lời rất chính xác

Giải:

a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\) 

=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\) 

=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\) 

=\(\dfrac{7}{5}+\dfrac{-1}{4}\) 

=\(\dfrac{23}{20}\) 

b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\) 

=\(\left[0+0\right]:\dfrac{2017}{2018}\) 

=0\(:\dfrac{2017}{2018}\) 

=0

c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)

=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) 

=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10

DD
6 tháng 3 2021

Đặt \(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2010}\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

Ta có: 

\(A=2017-\frac{1}{4}-\frac{2}{5}-...-\frac{2017}{2020}\)

\(A=1-\frac{1}{4}+1-\frac{2}{5}+1-\frac{3}{6}+...+1-\frac{2017}{2020}\)

\(A=\frac{3}{4}+\frac{3}{5}+\frac{3}{6}+...+\frac{3}{2020}\)

\(A=3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\)

\(B=\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\)

\(B=\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(\frac{A}{B}=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}{\frac{1}{5}\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2020}\right)}=\frac{3}{\frac{1}{5}}=15\)