Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ssh=(100-1):1+1=100
tổng=(100+1)x100:2=5050
vậy 1+2+3+4+5+6+7+8+9+10.......+92+93+94+95+96+97+98+99+100=5050
Số số hạng là: (100-1):1+1=100
Tổng là: (100+1)x100:2=5050
Vậy 1+2+3+4+5+...+96+97+98+99+100=5050
Bài 1:1×2×3×4×5×6×7×8×9×10 bằng mấy? Bài 2:5×5×5×5×5×5×5×5×5×5=3628800
Bài 2:9×9×9×9×9×9×9×9×9×9 = 3486784401 (bạn k cho mình nha)
Trả lời : ( Sinh nhật của Cheryl trùng vs sinh nhật của mk ) :
Bài làm
Trong số 10 ngày mà Cheryl đưa ra, từ ngày 14 đến 19 hàng tháng, ngày 18 và 19 chỉ xuất hiện một lần. Nếu sinh nhật của cô ấy vào hai ngày này thì chắc chắn Bernard đã biết đáp án. (Loại ngày 19/5 và 18/6)
Nhưng tại sao Albert khẳng định Bernard không biết?
Nếu Cheryl nói với Albert tháng sinh của cô ấy là tháng 5 hoặc tháng 6 thì sinh nhật của Cheryl có thể là ngày 19/5 hoặc 18/6. Và Bernard sẽ biết đáp án. Nhưng Albert khẳng định Bernard không biết, có nghĩa là Cheryl nói với Albert tháng sinh của cô ấy là tháng 7 hoặc tháng 8. (Loại tiếp ngày 15/5, 16/5 và 17/6)
Ban đầu, Bernard không biết sinh nhật của Cheryl nhưng làm thế nào cậu ấy biết chỉ sau câu nói đầu tiên của Albert?
Trong số những ngày còn lại, từ ngày 15 đến 17 của tháng 7 hoặc tháng 8, ngày 14 xuất hiện hai lần.
Nếu Cheryl nói với Bernard sinh nhật của cô ấy vào ngày 14 thì cậu không thể biết đáp án. Nhưng Bernard biết, vậy ta loại tiếp ngày 14/7 và 14/8. Còn lại 3 ngày: 16/7, 15/8 và 17/8.
Sau câu nói của Bernard, Albert cũng biết đáp án. Nếu Cheryl nói với Albert sinh nhật của cô vào tháng 8 thì Albert không biết vì có đến hai ngày trong tháng 8.
Vì thế, sinh nhật của Cheryl là ngày 16/7.
Hok_Tốt
Câu trả lời là
0-1-2-3-4-5-6-7-8-9
a) 2057 1 số đúng, đúng vị trí
b) 4586 0 số đúng
c) 9041 1 số đúng, sai vị trí
d) 7229 2 số đúng, 1 số đúng vị trí và 1 số sai vị trí
e) 3479 1 số đúng, sai vị trí
Xét theo đk đúng sai của các số trong dãy 4 chữ số
Trước tiên, theo b), loại hết 4 số 4,5,8,6
=> Còn 0,1,2,3,7,9
Tiếp theo, theo a) và c), loại tiếp 0, vị nếu 0 đúng, không thể vừa đứng đúng và cả sai vị trí
=> Còn 1,2,3,7,9
Tiếp theo, xét trường hợp
*Nếu 7 đúng (TH1)
=> theo a), số 2 sai
=> theo TH1, a) và d), 9 đúng
Nhưng, theo e) (đk:1 số đúng), 7 và 9 không thể cùng đúng (vô lý)
Nên, 7 sai
=> Còn 1,2,3,9
*Nếu 9 đúng (TH2)
=> theo e), 3 và 7 sai
Nhưng theo TH2 và e) (đk:2 số đúng), 2 đều đúng và sai vì có tận 2 số 2 (vô lý)
Nên 9 sai
=> Còn 1,2,3 và có 2 số 2 trong dãy 4 chữ số
Xét theo vị trí đúng sai của các số trong dãy 4 chữ số
Theo a), vị trí đầu tiên thuộc về số 2 (2xxx)
Theo d), vị trí thứ hai và ba, một trong hai sẽ thuộc về số 2 khác (22xx hoặc 2x2x)
Theo c), 1 không thể đứng cuối, nên vị trí cuối thuộc về số 3 (thỏa mãn yêu cầu của e) là 3 không đứng đầu) (22x3 hoặc 2x23)
Vị trí còn lại thuộc về số 1, 2 số có khả năng là dãy số đề yêu cầu sẽ là 2213 hoặc 2123.
Xin hết!!
999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999939999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999979999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
cái này ko chỉ có mỗi số 8 đâu chị ey
trời ơi cái này nhìn lé con mắt con bt hông cái này mà đố cô kiểu này thì cô cho ăn dép báo cáo
Toán 12 đây chắc vội thế cơ à?
Em giúp cho
Câu hỏi của Kaitou Kid - Toán lớp 9 - Học toán với OnlineMath
áp án:
Với 3 số 3, cách làm rất đơn giản: 3 x 3 - 3 = 6.
Sử dụng phép 6 + 6 - 6 = 6 đối với 3 số 6.
Đối với 3 số 4, ta có thể sử dụng phép căn bậc hai từng số rồi tính tổng của chúng.
Với 3 số 9, ta sử dụng phép căn bậc hai của 9 thành 3 rồi tính như trong trường hợp 3 số 3.
Cách làm đối với 3 số 5 và 3 số 7 tương tự nhau:
5 + 5 : 5 = 6
7 - 7 : 7 = 6
3 số 8 là trường hợp dễ gây nhầm lẫn nhất vì nhiều người sẽ sử dụng phép căn bậc ba của 8 bằng 2 rồi tính tổng của chúng. Tuy nhiên, người ra đề quy định, người giải không được thêm bất kỳ số tự nhiên nào trong khi ký hiệu căn bậc ba có số 3.
Trong trường hợp này, Ty Yann dùng hai lần căn bậc hai của 8 + 8 (tương đương căn bậc 4 của 16) bằng 2. Sau đó, ông dùng phép tính 8 - 2 = 6.
Với 3 số 1, tác giả dùng phép giai thừa:
(1 + 1 + 1)! = 3! = 3 x 2 x 1 = 6.
sai ạ 10-5=5 ạ
đùa tí