Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5^3.90.4^3}{25^2.3^2.2^{13}}=\frac{5^3.2.3^2.5.\left(2^2\right)^3}{\left(5^2\right)^2.3^2.2^{13}}=\frac{5^4.2^7.3^2}{5^4.3^2.2^{13}}=\frac{2^7}{2^{13}}=\frac{1}{64}\)
a.
\(\frac{5^3\times90\times4^3}{25^2\times3^2\times2^{13}}=\frac{5^3\times5\times9\times2\times\left(2^2\right)^3}{\left(5^2\right)^2\times3^2\times2^{13}}=\frac{5^4\times3^2\times2\times2^6}{5^4\times3^2\times2^{13}}=\frac{1}{2^6}=\frac{1}{64}\)
b.
\(\frac{18\times27+18\times\left(-23\right)}{34\times4-4\times52}=\frac{18\times\left(27-23\right)}{4\times\left(34-52\right)}=\frac{18\times4}{4\times\left(-18\right)}=-1\)
c.
\(\frac{15^2\times16^4-15^3\times16^3}{12^2\times20^3-20^2\times12^3}=\frac{16^3\times15^2\times\left(16-15\right)}{12^2\times20^2\times\left(20-12\right)}=\frac{16\times\left(16\times15\right)^2}{8\times\left(20\times12\right)^2}=\frac{16\times240^2}{8\times240^2}=2\)
d.
\(\frac{2\times3+4\times6+14\times21}{3\times5+6\times10+21\times35}=\frac{2\times3\times\left(1+2\times2+7\times7\right)}{3\times5\times\left(1+2\times2+7\times7\right)}=\frac{2}{5}\)
Chúc bạn học tốt
a) \(\frac{5^3\cdot90\cdot4^3}{25^2\cdot3^2\cdot2^{13}}=\frac{5^3\cdot2\cdot3^2\cdot5\cdot2^6}{5^4\cdot3^2\cdot2^{13}}=\frac{1}{2^6}=\frac{1}{64}\)
b) \(\frac{18\cdot27+18\cdot\left(-23\right)}{34\cdot4-4\cdot52}=\frac{18\left(27-23\right)}{4\left(34-52\right)}=\frac{9\cdot4}{2\cdot\left(-18\right)}=\frac{3^2\cdot2^2}{2\cdot2\cdot3^2\cdot\left(-1\right)}=-1\)
c) \(\frac{15^2\cdot16^4-15^3\cdot16^3}{12^2\cdot20^3-20^2\cdot12^3}=\frac{15^2\cdot16^3\left(16-15\right)}{12^2\cdot20^2\left(20-12\right)}=\frac{15^2\cdot16^3}{12^2\cdot20^2\cdot8}=\frac{3^2\cdot5^2\cdot2^{12}}{2^4\cdot3^2\cdot2^4\cdot5^2\cdot2^3}=2\)
d) \(\frac{2\cdot3+4\cdot6+14\cdot21}{3\cdot5+6\cdot10+21\cdot35}=\frac{2\cdot3+2^2\cdot2\cdot3+2\cdot3\cdot7^2}{3\cdot5+2^2\cdot3\cdot5+3\cdot5\cdot7^2}=\frac{2\cdot3\left(1+2^2+7^2\right)}{3\cdot5\left(1+2^2+7^2\right)}=\frac{2}{5}\)
\(\frac{5^3.2.3^2.5.2^6}{5^{10}.3^2.2^{13}}=\frac{5^4.2^7.3^2}{5^{10}.3^2.2^{13}}=\frac{1}{5^6.2^6}=\frac{1}{10^6}\)
\(\frac{18\left(27-23\right)}{4\left(34-52\right)}=\frac{18.4}{4.\left(-18\right)}=-1\)
Rút gọn phân số sau thành phân số tối giản
a) \(\dfrac{5^3.90.4^3}{25^2.3^2.2^{13}}\) = \(\dfrac{5^3.3^2.2.5.2^6}{5^4.3^2.2^{13}}\) = \(\dfrac{5^4.3^2.2^7}{5^4.3^2.2^{13}}\) = \(\dfrac{2^7}{2^{13}}\) = \(\dfrac{1}{2^6}\) = \(\dfrac{1}{64}\)
b) \(\dfrac{18.27+18.\left(-23\right)}{34.4-4.52}\) = \(\dfrac{18\left(27-23\right)}{4\left(34-52\right)}\) = \(\dfrac{18.4}{4.\left(-18\right)}\) = \(\dfrac{18}{-18}\) = -1
c) \(\dfrac{15^2.16^4-15^3.16^3}{12^2.20^3-20^2.12^3}\) = \(\dfrac{15^2.16^3.16-15^2.15.16^3}{12^2.20^2.20-20^2.12^2.12}\) = \(\dfrac{15^2.16^3.\left(16-15\right)}{12^2.20^2.\left(20-12\right)}\)= \(\dfrac{15^2.16^3}{12^2.20^2.8}\) = \(\dfrac{\left(3.5\right)^2.\left(2^4\right)^3}{\left(3.4\right)^2.\left(4.5\right)^2.2^3}\) = \(\dfrac{3^2.5^2.2^{12}}{3^2.4^2.4^2.5^2.2^3}\) = \(\dfrac{2^{12}}{4^4.2^3}\) = \(\dfrac{2^{12}}{2^8.2^3}\) = \(\dfrac{2^{12}}{2^{11}}\) = 2
d) \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\) = \(\dfrac{2.3+2^2.2.3+2.7.3.7}{3.5+3.2.5.2+3.7.5.7}\) = \(\dfrac{2.3+2^3.3+2.3}{3.5+3.5.2^2+3.5}\) = \(\dfrac{2.3 \left(1+2^2+1\right)}{3.5\left(1+2^2+1\right)}\) = \(\dfrac{2.3}{3.5}\) = \(\dfrac{2}{5}\)
a) \(\frac{18.\left(27-23\right)}{4.\left(34-52\right)}=\frac{18.4}{4.\left(-18\right)}=-1\)
b) \(\frac{15^2.16^3.\left(16-15\right)}{12^2.20^2.\left(20-12\right)}=\frac{15^2.16^3}{12^2.20^2.8}=\frac{3^2.5^2.4^3.4^3}{4^2.3^2.4^2.5^2.8}=\frac{1}{8}\)
Câu 3 : \(2+4+6+.........+2n=156\)
\(\Leftrightarrow2\left(1+2+3+.....+n\right)=156\)
\(\Leftrightarrow1+2+3+.........+n=78\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=78\)\(\Leftrightarrow n\left(n+1\right)=156=12.13\)\(\Leftrightarrow n=12\)
Vậy \(n=12\)
a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)
\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)
\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)
+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)
\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)
+)Từ (1) và (2)
\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)
Vậy A<B
b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)
+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)
\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)
c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)
\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(\Leftrightarrow C< D\)
Chúc bạn học tốt
a, =1/64
b, =-1
a)\(\frac{5^3.90.4^3}{25^2.3^2.2^{13}}\)=\(\frac{5^3.5.3^2.2.2^6}{5^4.3^2.2^{13}}\)=\(\frac{5^4.3^2.2^7}{5^4.3^2.2^{13}}\)=\(\frac{2^7}{2^{13}}\)=\(\frac{1}{2^6}\)=\(\frac{1}{64}\)
b)\(\frac{18.27+18.\left(-23\right)}{34.4-4.52}\)=\(\frac{18.\left[27+\left(-23\right)\right]}{4.\left(34-52\right)}\)=\(\frac{18.4}{4.\left(-18\right)}\)= \(-1\)