K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Ta có \(\hept{\begin{cases}x+y+z=1,5\left(1\right)\\x^2+y^2+z^2=0,75\left(2\right)\end{cases}}\)

Lấy \(\left(2\right)-\left(1\right)\)có \(x^2+y^2+z^2-x-y-z=-0,75\)

\(\Leftrightarrow\left(x^2-x+0,25\right)+\left(y^2-y+0,25\right)+\left(z^2-z+0,25\right)=0\)

\(\Leftrightarrow\left(x^2-2.x.0,5+0,25\right)+\left(y^2-2.y.0,5+0,25\right)+\left(z^2-2.z.0,5+0,25\right)=0\)

\(\Leftrightarrow\left(x-0,5\right)^2+\left(y-0,5\right)^2+\left(z-0,5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-0,5\right)^2=0\\\left(y-0,5\right)^2=0\\\left(z-0,5\right)^2=0\end{cases}\Leftrightarrow x=y=z=0,5}\)

Vậy \(x=y=z=0,5\)

29 tháng 9 2020

ta có \(2^n\)\(⋮\)2

=>\(2^n-1⋮1\)

=>\(2^n-1\)là hợp số

29 tháng 9 2020

\(p^3+p^2+1\)

=\(p^2+2+p^3-1\)

=

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

31 tháng 8 2020

\(\text{Z là Oxi =}>NTK_Z=NTK_O=16\left(\text{đvC}\right)\)

\(=>NTK_Y=1,5NTK_Z=1,5.16=24\left(\text{đvC}\right)\)

\(=>NTK_X=\frac{1}{2}NTK_Y=\frac{1}{2}.24=12\left(\text{đvC}\right)\)

          \(\text{Vậy NTK của X là 12 đvC.}\)