Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
4.Theo đề bài ta có:
\(A=7.a+4 \)
\(=17.b+3 \)
\(=23.c+11 (a,b,c ∈ N)\)
Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)
\(=17.b+3+150=17.b+17.9=17.(b+9)\)
\(=23.c+11+150=23.c+23.7=23.(c+7) \)
\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)
Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)
Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)
Do \(2587<2737\)
\(\Rightarrow A\div2737\) dư \(2587\)
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
Câu 1: Lời giải:
a, Đặt \(A=\dfrac{3x+7}{x-1}\).
Ta có: \(A=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=\dfrac{3x-3}{x-1}+\dfrac{10}{x-1}=3+\dfrac{10}{x-1}\)
Để \(A\in Z\) thì \(\dfrac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\dfrac{3x+7}{x-1}\in Z\).
Câu 3:
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\) khi x = -1
b, Ta có: \(-\left|3-x\right|\le0\)
\(\Rightarrow Q=1010-\left|3-x\right|\le1010\)
Dấu " = " khi \(\left|3-x\right|=0\Rightarrow x=3\)
Vậy \(MAX_Q=1010\) khi x = 3
c, Vì \(\left(x-3\right)^2+1\ge0\) nên để C lớn nhất thì \(\left(x-3\right)^2+1\) nhỏ nhất
Ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)
\(\Rightarrow C=\dfrac{5}{\left(x-3\right)^2+1}\le\dfrac{5}{1}=5\)
Dấu " = " khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(MAX_C=5\) khi x = 3
d, Do \(\left|x-2\right|+2\ge0\) nên để D lớn nhất thì \(\left|x-2\right|+2\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+2\ge2\)
\(\Rightarrow D=\dfrac{4}{\left|x-2\right|+2}\le\dfrac{4}{2}=2\)
Dấu " = " khi \(\left|x-2\right|=0\Rightarrow x=2\)
Vậy \(MAX_D=2\) khi x = 2
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!Bài 1 : \(a,\left|x-3,5\right|=7,5\)
\(\Rightarrow\orbr{\begin{cases}x-3,5=7,5\\x-3,5=-7,5\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-4\end{cases}}\)
\(b,\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
\(c,3,6-\left|x-0,4\right|=0\)
\(\Rightarrow\left|x-0,4\right|=3,6\)
\(\Rightarrow\orbr{\begin{cases}x-0,4=3,6\\x-0,4=-3,6\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3,2\end{cases}}\)
\(d,\left|x-\frac{1}{2}\right|-\frac{1}{3}=1\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{4}{3}\\x-\frac{1}{2}=-\frac{4}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{6}\\x=-\frac{5}{6}\end{cases}}\)
Bài 1:
a) \(x^{2015}=x\Leftrightarrow x^{2015}-x=0\Leftrightarrow x\left(x^{2014}-1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=1\)(do \(x\in N\))
b)\(3^{x+1}+3^x=108\Leftrightarrow3^x\left(3+1\right)=108\Leftrightarrow3^x=27\Leftrightarrow x=3\)
c) Do \(x\in N\)nên \(1+3x>0\). Ta có:
\(\left(1+3x\right)^4=256\Leftrightarrow\left(1+3x\right)^4=4^4\Leftrightarrow1+3x=4\Leftrightarrow x=1\)
Bài 2: \(A=1+2+2^2+2^3+...+2^{2015}\)\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2013}+2^{2014}+2^{2015}\right)\)\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2013}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\left(1+2^3+...+2^{2013}\right)=7.\left(1+2^3+...+2^{2013}\right)\)chia 7 dư 0
Bài 3: Mình chưa hiểu đề bài cho lắm. Nếu như tính GTBT thì C=1022; D=289; E=128.
p/s: Đây ms chỉ là gợi ý. Bạn nên tự làm lại để hiểu hơn.