\(\frac{1}{3}\times3^n=7\times3^2\times9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

25 tháng 1 2016

Em ms có học lớp 5 thôi ạ !

25 tháng 1 2016

em cũng ms lớp 5 thui ạ

2 tháng 12 2017

-4/8 nha các bạn

- Giúp tớ với nhé ^^Câu 1 : So sánh 2300 và 3200Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1Câu 6 : Cho \(A=\frac{4}{n-5}\)A. Tìm giá trị n để A là phân sốB. Tìm giá trị n để A có giá trị là số...
Đọc tiếp

- Giúp tớ với nhé ^^
Câu 1 : So sánh 2300 và 3200
Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04

Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.
Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1
Câu 6 : Cho \(A=\frac{4}{n-5}\)
A. Tìm giá trị n để A là phân số
B. Tìm giá trị n để A có giá trị là số nguyên
Câu 7 : Trên đường thẳng xy lần lượt lấy các điểm theo thứ tự A , B , C, D sao cho AC = BD
A. Chứng minh rằng AB = CD
B . Gọi P, Q lần lượt là trung điểm của AB và CD. Chứng minh rằng \(PQ=\frac{AC+BD}{2}\)
p/s: Các bạn trả lời giúp tớ cách giải nhé. Cảm ơn.
Câu 3 : Tính tổng \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2011.2013}+\frac{2}{2013.2015}\)

3
29 tháng 4 2015

Câu 2:

 25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04

= 20,04(25 + 75 - 2003 + 2004)

= 20,04.101 = 2024,04

29 tháng 4 2015

C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)

\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)

mấy câu kia mình lười làm lắm bạn

Chúc bạn học tốt!^_^