Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là a.
Ta có:
a chia 15 dư 7
=> a - 7 chia hết cho 15 => a - 7 + 15 chia hết cho 15
=> a + 8 chia hết cho 15 (1)
a chia 6 dư 4
=> a - 4 chia hết cho 6
=> a - 4 + 6.2 chia hết cho 6
=> a + 8 chia hết cho 6 (2)
Từ (1); (2) => a + 8 \(\in\)BC( 6; 15 ) => a + 8 \(⋮\)BCNN ( 6 ; 15 )
mà BCNN ( 6; 15 ) = 30
=> a + 8 \(⋮\)30
=> a + 8 - 30 \(⋮\)30
=> a - 22 \(⋮\)30
=> a chia 30 dư 22.
Gọi sbc là A; sc là B
Ta có:
A=3B+8
A+B=72
3B+8+B=72
4B+8=72
4B=72-8
4B=64
B=64:4
B=16
A=72-16
A=56
Vậy sbc là 56, sc là 16
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi