K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 10 2016
Đây là cách của cô Loan. Ngoài ra mình cũng còn một cách ( tự nghĩ ) :) Bạn có thể sử dụng cách dễ hiểu theo quan điểm của bạn.
12 tháng 4 2015
bài này vẽ hình thật chuẩn là làm dk mk có nhiều cách làm lắm
+ Xét tứ giác ABDC có
MA=MD và MB=MC => tứ giác ABDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành)
Mà ta lại có góc BAC=90
=> Hình bình hành ABDC là hình chữ nhật
+ Kéo dài BA về phía A cắt EI tại F. Xét tứ giác ACIF có
AF _|_ AC
CI _|_ AC (do ABDC là hình chữ nhật)
=> AF//CI. mà IF//AC => ACIF là hình bình hành (tứ giác có các cặp cạnh đối // từng đôi một)
Mà CI_|_ AC => ACIF là hình chữ nhật
=> AF=CI mà CI=AC => AF=AC (1)
+ Xét tam giác vuông ABC ta có MA=MB=MC => tam giác MAC cân tại M =>\(\widehat{ACB}=\widehat{MAC}\)
Mà ^ACB=^BAH (cùng phụ với ^ABC)
=>\(\widehat{MAC}=\widehat{BAH}\) mà\(\widehat{BAH}=\widehat{EAF}\) (đối đỉnh) => \(\widehat{EAF}=\widehat{MAC}\) (2)
+ Xét hai tam giác vuông AEF và tam giác vuông ADC có
\(\widehat{AFE}=\widehat{ACD}\)=90 (3)
Từ (1) (2) và (3) => tam giác AEF=tam giác ADC (g.c.g)
=> AE=AD
Mà AD=BC (đường chéo của hình chữ nhật ABDC)
=> AE=BC (dpcm)
+ Xét tứ giác ABDC có
MA=MD và MB=MC => tứ giác ABDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành)
Mà ta lại có ^BAC=90
=> Hình bình hành ABDC là hình chữ nhật
+ Kéo dài BA về phía A cắt EI tại F. Xét tứ giác ACIF có
AF cuông góc với AC
CI vuông góc với AC (do ABDC là hình chữ nhật)
=> AF//CI. mà IF//AC => ACIF là hình bình hành (tứ giác có các cặp cạnh đối // từng đôi một)
Mà CI vuông góc AC => ACIF là hình chữ nhật
=> AF=CI mà CI=AC => AF=AC (1)
+ Xét tam giác vuông ABC ta có MA=MB=MC (trong tam giác vuông trung tuyến thuộc cạnh huyền thì bằng 1/2 cạnh huyền) => tam giác MAC cân tại M => ^ACB=^MAC
Mà ^ACB=^BAH (cùng phụ với ^ABC)
=>^MAC=BAH mà ^BAH=^EAF (đối đỉnh) => ^EAF=^MAC (2)
+ Xét hai tam giác vuông AEF và tam giác vuông ADC có
^AFE=^ACD=90 (3)
Từ (1) (2) và (3) => tam giác AEF=tam giác ADC (g.c.g)
=> AE=AD
Mà AD=BC (đường chéo của hình chữ nhật ABDC)
=> AE=BC (dpcm)