\(x^3+6x^2+11x+6\)

2, Cmr với mọi số nguyên n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

17 tháng 2 2019

1. \(x^3+6x^2+11x\) +6

= \(x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

= \(\left(x+3\right)\left(x^2+3x+2\right)\)

=(x+3)(x+1)(x+2)

2. Sua \(n^3\left(n^2+7\right)^2-36n\) thanh \(n^3\left(n^2-7\right)^2-36n\)

A= \(n^3\left(n^2-7\right)^2-36n\)

= \(n^7-14n^5+49n^3-36n\)

= (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)

Day la tich cua 7 so tu nhien lien tiep=> A \(⋮105\)

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

15 tháng 10 2020

Dễ dàng phân tích được

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)

Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)