Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
a/ \(cos\left(x+15^0\right)=1\Leftrightarrow x+15^0=k360^0\Rightarrow x=-15^0+k360^0\)
b/ \(cos\left(3x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/ \(cos\left(4x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{3}\Rightarrow cos\left(4x-\frac{\pi}{4}\right)=cosa\)
\(\Rightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=a+k2\pi\\4x-\frac{\pi}{4}=-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{16}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
d/ \(cos4x=cos\left(x+\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=4x+k2\pi\\x+\frac{\pi}{3}=-4x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{9}+\frac{k2\pi}{3}\\x=-\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/ \(cos5x=-cos3x=cos\left(\pi-3x\right)\Rightarrow\left[{}\begin{matrix}5x=\pi-3x+k2\pi\\5x=3x-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=-\frac{\pi}{2}+k\pi\end{matrix}\right.\)
Câu 1:
\(cos7x-\sqrt{3}sin7x=-2\\ \Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow7x+\dfrac{\pi}{3}=-\pi+k2\pi\\ \Leftrightarrow x=-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\)
Vì \(x\in[\dfrac{2\pi}{5};\dfrac{6\pi}{7}]\)
\(\Rightarrow\dfrac{2\pi}{5}\le x\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{2\pi}{5}\le-\dfrac{4\pi}{21}+k\dfrac{2\pi}{7}\le\dfrac{6\pi}{7}\\ \Leftrightarrow\dfrac{31}{15}\le k\le\dfrac{11}{3}\)
Vì \(k\in Z\) nên \(k=3\)
Vậy \(x\) cần tìm là \(\dfrac{2\pi}{3}\)
Câu 2:
\(2sin^2x-sinxcosx-cos^2x=m\\ \Leftrightarrow2\dfrac{1-cos2x}{2}-\dfrac{1}{2}s\text{in2}x-\dfrac{1+cos2x}{2}=m\\ \Leftrightarrow3cos2x+s\text{in2}x=1-2m\)
Điều kiện để phương trình có nghiệm là:
\(3^2+1^2\ge\left(1-2m\right)^2\\ \Leftrightarrow4m^2-4m-9\le0\\ \Leftrightarrow\dfrac{1-\sqrt{10}}{2}\le m\le\dfrac{1+\sqrt{10}}{2}\)
a.
\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)
\(tan3x-tanx=0\)
\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)
\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow2sinx.cosx=0\)
\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
c.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
d.
\(\Leftrightarrow cos^2\left(2x-1\right)=0\)
\(\Leftrightarrow cos\left(2x-1\right)=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)
a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π
=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ
b, đề sai phải ko
c, cos22x - sin22x - 2sinx -1=0
<=> -2sin22x -2sin2x =0
<=> sin2x=0 hoặc sin2x=-1
<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ
d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2
cos( 5x + π/4 ) = -1/2
<=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5
f,4x+π/3=3π/10 -x +k2π hoặc 4x+π/3 = x - 3π/10 +k2π
<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3
a)
\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)
c)
\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)
\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)
d)
\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)
\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)
f)
\(\cos 2x-\cos 4x=0\)
\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)
b,e,g bạn xem lại đề, đơn vị không thống nhất.
a, \(cos^2x=0\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
b, \(cos^2x=1\)
\(\Leftrightarrow2cos^2x-1=1\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow2x=k2\pi\)
\(\Leftrightarrow x=k\pi\)
c, \(cos\left(2x+\dfrac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x+\dfrac{\pi}{6}=k2\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{12}+k\pi\)