\(\left|x^2-9\right|+2x< 6\)

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

\(a.\left|x^2-9\right|< 6-2x\)

ĐK: \(6-2x\ge0\Leftrightarrow x\le3\)

\(pt\Leftrightarrow2x-6< x^2-9< 6-2x\)

Giải từng pt một

\(x^2-9>2x-6\Leftrightarrow x^2-2x-3>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

\(x^2-9< 6-2x\Leftrightarrow x^2+2x-15< 0\Leftrightarrow-5< x< 3\)

Kết hợp điều kiện

\(\Rightarrow-5< x< -1\Rightarrow x\in\left(-5;-1\right)\)

Làm tương tự với câu b

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

6 tháng 4 2017

a) \(x^2\ge4x\)(1)

Nếu \(\left[{}\begin{matrix}x_1=0\\x_2=4\end{matrix}\right.\) \(\Rightarrow VT=VP\)

Nếu \(x< 0\Rightarrow VT>0;VP< 0\)=> \(VT>VP\)

Nếu 0<x<4 \(\Rightarrow VT< VP\)

nếu x> 4\(\Rightarrow VT>VP\)

Kết luận nghiệm BPT (1): \(\left[{}\begin{matrix}x\le0\\x\ge4\end{matrix}\right.\)

b)

(1) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)

(2) \(\Rightarrow-2\le x\le3\)

KL nghiệm

\(\left[{}\begin{matrix}-2\le x< \dfrac{3-\sqrt{5}}{2}\\\dfrac{3+\sqrt{5}}{2}< x\le3\end{matrix}\right.\)

9 tháng 5 2017

a)\(Bpt\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-4x\ge0\left(1\right)\\\left(2x-1\right)^2-9>0\left(2\right)\end{matrix}\right.\)
Giải (1): \(x^2-4x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)
Giải (2): \(\left(2x-1\right)^2-9=\left(2x-1\right)^2-3^2=\left(2x-4\right)\left(2x+2\right)\)
\(\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vì vậy: \(\left(2x-1\right)^2-9< 0\Leftrightarrow-1< x< 2\).
Kết hợp điều kiện \(\left(1\right)\)\(\left(2\right)\) suy ra: \(-1< x\le0\) thỏa mãn hệ bất phương trình.

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

c)

\(\left\{\begin{matrix} -x^2+4x-7< 0\\ x^2-2x-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2-4x+7>0\\ x^2-2x+1\geq 2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x-2)^2+3>0\\ (x-1)^2-2\geq 0\end{matrix}\right.\Leftrightarrow (x-1)^2-2\geq 0\Leftrightarrow \left[\begin{matrix} x-1\geq \sqrt{2}\\ x-1\leq -\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\geq \sqrt{2}+1\\ x\leq 1-\sqrt{2}\end{matrix}\right.\)

d)

\(\left\{\begin{matrix} -2x^2-5x+4< 0\\ -x^2-3x+10>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x^2+5x-4>0\\ (2-x)(x+5)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2(x+\frac{5}{4})^2-\frac{57}{8}>0\\ (2-x)(x+5)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x+\frac{5}{4}-\frac{\sqrt{57}}{4})(x+\frac{5}{4}+\frac{\sqrt{57}}{4})>0\\ (2-x)(x+5)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{-5+\sqrt{57}}{4}\\ x< \frac{-5-\sqrt{57}}{4}\end{matrix}\right.\\ -5< x< 2\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} -5< x< \frac{-5-\sqrt{57}}{4}\\ \frac{\sqrt{57}-5}{4}< x< 2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

a)

\(\left\{\begin{matrix} 2x^2+9x+7>0\\ x^2+x-6< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(2x+7)>0\\ (x-2)(x+3)< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>-1\\ x< \frac{-7}{2}\end{matrix}\right.\\ -3< x< 2\end{matrix}\right.\Rightarrow -1< x< 2\)

b) \(\left\{\begin{matrix} 2x^2+x-6>0\\ 3x^2-10x+3\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (2x-3)(x+2)>0\\ (x-3)(3x-1)\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{3}{2}\\ x< -2\end{matrix}\right.\\ \left[\begin{matrix} x\geq 3\\ x\leq \frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x\geq 3\\ x< -2\end{matrix}\right.\)

a: =>|x+3|=|2x-1|

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+3\\2x-1=-x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\3x=-2\end{matrix}\right.\Leftrightarrow x\in\left\{4;-\dfrac{2}{3}\right\}\)

b: \(\left|x^2-2x\right|=\left|2x^2-x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-2=x^2-2x\\2x^2-x-2=-x^2+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\\left(x+1\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-2;1;-1;\dfrac{2}{3}\right\}\)

c: \(\left|3x^2-2x\right|=\left|6-x^2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\end{matrix}\right.\)

\(\Leftrightarrow2x^2-x-3=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x+1\right)=0\)

=>x=3/2 hoặc x=-1

d: \(\left|2x^2-3x-5\right|=\left|x^2-4x-5\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=x^2-4x-5\\2x^2-3x-5=4x+5-x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\\3x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\3x^2-10x+3x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\\left(3x-10\right)\left(x+1\right)=0\end{matrix}\right.\)

hay \(x\in\left\{\dfrac{10}{3};-1\right\}\)

e: |5x+1|=|2x-3|

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=2x-3\\5x+1=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\7x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)

2 tháng 3 2019

a)

\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)

\(\)Ta có

\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)

=> Bất phương trình đàu tiên sai, hệ bất phương trình sai

b)

\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)

2 tháng 3 2019

bạn ơi giải giúp mình câu c, e, f giùm mình với ạ .