Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đa thức x2 + 7x + 12 được phân tích thành nhân tử là:
2. Giá trị lớn nhất của M= -x2 - 4x + 15 là:
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
bài 1:
a, x^2-2x = x*(x-2)
b, x^2 -xy+x-y = x*(x-y) + (x-y)
= (x-y) (x+1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(B=\left(x^2+2x+1\right)+\left(y^2-2.2.y+2^2\right)=\left(x+1\right)^2+\left(y-2\right)^2\)
thay x=99 và y=102 vào B ta có:
\(B=\left(99+1\right)^2+\left(102-2\right)^2=100^2-100^2=0\)
b)
b) \(2x^2+16x+32-2y^2=2\left(x^2+8x+16-y^2\right)=2\left(\left(x+4\right)^2-y^2\right)=2\left(x+4-y\right)\left(x+4+y\right)\)
\(a.=4a\left(a-2\right)\)
\(b.=x\left(x+2xy+y^2-z^2\right)\)
\(=x\left(\left(x+y\right)^2-z^2\right)\)
\(=x\left(x+y-z\right)\left(x+y+z\right)\)
Gọi f( x ) = x3 - x2 - 11x + m
g( x ) = x - 3
Cho g( x ) = 0
\(\Rightarrow\)x - 3 = 0
\(\Rightarrow\)x = 3
\(\Rightarrow\)f( 3 ) = 33 - 32 - 11.3 + m
\(\Rightarrow\)f( 3 ) = - 15 + m
Để f( x ) \(⋮\)g( x )
\(\Leftrightarrow\)- 15 + m = 0
\(\Rightarrow\)m = - 15
Vậy : m = - 15 thì M = x3 - x2 - 11x + m \(⋮\)x - 3
\(1,=x\left(x+y\right)+\left(x+y\right)=\left(x+1\right)\left(x+y\right)\\ 2,\Leftrightarrow x^2-3x-4x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
=(x2+x)+(xy+y)
=x(x+1)+y(x+1)
=(x+y)(x+1)