\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

c) a=1;b=2;c=3;d=4

13 tháng 4 2016

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

hay \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

Vậy \(x=\frac{23}{11}\)

25 tháng 2 2017

a) \(\left|2x-1\right|=5\)

\(\Rightarrow\left[\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\left[\begin{matrix}=3\\=-2\end{matrix}\right.\)

b) \(\left(5^x-1\right)3-2=70\)

\(\Rightarrow5^x.3-3=72\)

\(\Rightarrow5^x.3=75\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

c) \(\left(x-1\frac{1}{2}\right)^2+\frac{3}{4}=\frac{1}{4}\)

\(\Rightarrow\left(x-1\frac{1}{2}\right)^2=\frac{-1}{2}\)

............. Làm tiếp nhé!

d) \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{22}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{22}{45}\)
\(\Rightarrow x=\frac{23}{22}\)
Vậy \(x=\frac{23}{22}.\)
25 tháng 2 2017

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}.\frac{22}{45}x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

14 tháng 5 2017

a, \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\\\frac{1}{x}-\frac{2}{3}=\frac{-1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{11}{12}\\\frac{1}{x}=\frac{5}{12}\end{cases}\Rightarrow\orbr{\begin{cases}11x=12\\5x=12\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}}\)

b, \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

Đặt S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)

2S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\)

2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

2S = \(\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)

S = \(\frac{22}{45}:2=\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}\Rightarrow x=\frac{23}{11}\)

14 tháng 5 2017

a/ (1/x -2/3)2=1/16=(1/4)2

Có 2 trường hợp:

+/ 1/x -2/3= - 1/4

<=> 1/x =2/3 -1/4 = 5/12

=> x1=12/5

+/ 1/x - 2/3 =1/4

<=> 1/x = 2/3 +1/4= 11/12

=> x2=12/11

b/ Ta có: 

2/(1.2.3)=1/(1.2) - 1/2.3 ;  2/(2.3.4)=1/2.3 -1/3.4 ; ...; 2/(8.9.10)=1/8.9 -1/9.10

=> (1/1.2.3 + 1/2.3.4 +...+1/8.9.10)=23/45

<=> (1/1.2 -1/2.3 +1/2.3 -1/3.4 +...+1/8.9-1/9.10).x/2=23/45

<=> (1/1.2 -1/9.10).x/2 =23/45

<=> x.11/45=23/45

=> x=23/11

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)

17 tháng 3 2020

Bài 1:

a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)

\(=\frac{-15}{240}-\frac{16}{240}\)

\(=\frac{-31}{240}\)

b, \(=\frac{-10}{12}-\frac{-12}{12}\)

\(=\frac{2}{12}=\frac{1}{6}\)

c, \(=\frac{-30}{6}-\frac{1}{6}\)

\(=\frac{-31}{6}\)

Bài 2:

a, \(x=-\frac{1}{2}-\frac{3}{4}\)

\(x=-\frac{1}{4}\)

b,   \(\frac{1}{2}+x=-\frac{11}{2}\)

\(x=-\frac{11}{2}-\frac{1}{2}\)

\(x=-6\)

Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^

\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)

=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)

=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)

=>24<28x<231

=>28x\(\in\){25;26;27;28;.............................;230}

=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224

=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}

Vậy x\(\in\) {1;2;3;4;5;6;7;8}

\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)

\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)

\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)

=>3\(⋮\)\(\frac{1}{6}+x\)

=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}

Ta có bảng:

\(\frac{1}{6}+x\)-11-33
x\(-1\frac{1}{6}\)\(1\frac{1}{6}\)\(-3\frac{1}{6}\)3\(\frac{1}{6}\)

Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}

Chúc bn học tốt

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

25 tháng 3 2016

nhiều quá từng phần mình mới làm kịp

17 tháng 4 2019

i don't know i mới học lớp 5

bn eie mik lớp 6 nha bn