Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM :\(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)
Áp dụng BĐT Cô si cho 2 số \(a_1\) và 1 :
\(a_1+1\ge2\sqrt{a_1}\ge0\)
Tương tự cũng có :
\(a_2+1\ge2\sqrt{a_2}\ge0\)
........
\(a_n+1\ge2\sqrt{a_n}\ge0\)
=> \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\sqrt{a_1.a_2...a_n}=2^n\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a_1=a_2=...=a_n=1\)
Mik sửa lại đề thành \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Văn Đạt, @Lê Thanh Nhàn, @Vũ Huy Hoàng, @Trần Thanh Phương, @@Nk>↑@,@buithianhtho, @Nguyễn Thị Ngọc Thơ
1. Ta có: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Rightarrow\left(x+y+z\right)^2=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=xy+yz+zx+2y\sqrt{xz}+2z\sqrt{xy}+2x\sqrt{yz}\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+zx-2y\sqrt{xz}-2z\sqrt{xy}-2x\sqrt{yz}=0\)
\(\Leftrightarrow\left(x-\sqrt{yz}\right)^2+\left(y-\sqrt{xz}\right)^2+\left(z-\sqrt{xy}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{yz}\\y=\sqrt{xz}\\z=\sqrt{xy}\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)
Bài 1:
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\Leftrightarrow x+y+z-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}=0\)
\(\Leftrightarrow 2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}=0\)
\(\Leftrightarrow (x+y-2\sqrt{xy})+(y+z-2\sqrt{yz})+(z+x-2\sqrt{xz})=0\)
\(\Leftrightarrow (\sqrt{x}-\sqrt{y})^2+(\sqrt{y}-\sqrt{z})^2+(\sqrt{z}-\sqrt{x})^2=0\)
Vì \( (\sqrt{x}-\sqrt{y})^2;(\sqrt{y}-\sqrt{z})^2;(\sqrt{z}-\sqrt{x})^2\geq 0, \forall x,y,z>0\) nên để tổng của chúng bằng $0$ thì:
\( (\sqrt{x}-\sqrt{y})^2=(\sqrt{y}-\sqrt{z})^2=(\sqrt{z}-\sqrt{x})^2=0\)
\(\Rightarrow x=y=z\) (đpcm)