Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABD và tam giác ACD có : AD chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAD = góc CAD do AD là phân giác của góc BAC (gt)
=> tam giác ABD = tam giác ACD (c-g-c)
b, tam giác ABD = tam giác ACD (câu a)
=> BD = DC (đn) mà D nằm giữa B; C
=> D là trung điểm của BC (đn)
=> AD là trung tuyến
CF là trung tuyến
CF cắt AD tại G
=> G là trong tâm của tam giác ABC (đl)
c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\)tam giác EDC cân tại E
D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)
Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC
\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng
Bài 2:
a: Ta có: ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=AH/2(1)
Ta có: ΔADH vuông tại D
mà DI là đường trung tuyến
nên DI=AH/2(2)
Từ (1) và (2) suy ra IE=ID
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ME=MD
hay M nằm trên đường trung trực của ED(1)
Ta có: IE=ID
nên I nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra IM là đường trung trực của ED
hay D đối xứng với E qua IM