Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`
a)
\(\begin{array}{l}P + \frac{1}{{x + 2}} = \frac{x}{{{x^2} - 2{\rm{x}} + 4}}\\P = \frac{x}{{{x^2} - 2{\rm{x}} + 4}} - \frac{1}{{x + 2}}\\P = \frac{{x\left( {x + 2} \right) - {x^2} + 2{\rm{x}} - 4}}{{\left( {{x^2} - 2{\rm{x}} + 4} \right)\left( {x + 2} \right)}}\\P = \frac{{{x^2} + 2{\rm{x}} - {x^2} + 2{\rm{x}} + 4}}{{{x^3} + 8}}\\P = \frac{{4{\rm{x}} - 4}}{{{x^3} + 8}}\end{array}\)
b)
\(\begin{array}{l}P - \frac{{4\left( {x - 2} \right)}}{{x + 2}} = \frac{{16}}{{x - 2}}\\P = \frac{{16}}{{x - 2}} + \frac{{4\left( {x - 2} \right)}}{{x + 2}}\\P = \frac{{16\left( {x + 2} \right) + 4\left( {x - 2} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{16{\rm{x}} + 32 + 4{{\rm{x}}^2} - 16{\rm{x}} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{4{{\rm{x}}^2} + 48}}{{{x^2} - 4}}\end{array}\)
c)
\(\begin{array}{l}P.\frac{{x - 2}}{{x + 3}} = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}\\ \Rightarrow P = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}.\frac{{x + 3}}{{x - 2}}\\P = \frac{{{{(x - 2)}^2}(x + 3)}}{{(x - 3)(x + 3)(x - 2)}} = \frac{{x - 2}}{{x - 3}}\end{array}\)\(\)
d)
\(\begin{array}{l}P:\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}} = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}\\ \Rightarrow P = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}.\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}}\\P = \frac{{(x - 2)(x + 2)(x - 3)(x + 3)}}{{2{\rm{x}}(x + 3)(x + 2)}}\\P = \frac{{(x - 2)(x - 3)}}{{2{\rm{x}}}}\end{array}\)
a) P=\(\dfrac{4x-4}{x^3-8}\)( lấy VP-VT)
b)P=\(\dfrac{4x^2+48}{x^2-4}\) ( chuyển VT và thành VP+VT)
c) P=\(\dfrac{x-2}{x-3}\) ( chuyển VT thành VP.VT là ra)
d) \(\dfrac{\left(x-2\right)\left(x-3\right)}{2x}\)( lấy VP.VT)
huyển vế:
(x-2)(x-6)(x-3)(x-4)- 72X^2
(x-2)(x-6)
= (x^2 - ... +12)
số giữa:
-6x -2x = -8x
(x-3)(x-4)
= (x^2 ... +12)
số giữa:
-4x -3x = -7x
nhân 2 số giữa với nhau:
(-8x)(-7x) = +56x^2
-72x^2 +56x^2 = -16x^2 = (-16x)(x)
Đáp số:
(x^2 -16x +12)(x^2 +x +12)
phương trình hả bạn
\(\left(x+2\right)^2+2.\left(x-4\right)=\left(x-4\right).\)\(\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow\left(x^2-x^2\right)+\left(4x+2x+6x\right)=8+8-4\)
\(\Leftrightarrow12x=12\)
\(\Leftrightarrow x=1\)
Vậy : \(S=\left\{1\right\}\)