Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu x đều lớn hơn 1 ; y lớn hơn hoặc = 0; z\(\ge\) 1:
Nhận xét: 2014x chia hết cho 2;
2013y không chia hết cho 2
2012z chia hết cho 2
=> 2013y + 2012z không chia hết cho 2
=> 2014x = 2013y + 2012z không xảy ra
+) Nếu x = 1 => 2014 = 2013y + 2012z => chỉ có y = 1; z =0 thoả mãn
+) Nếu x = 0 => 1 = 2013y + 2012z => không có y,z thoả mãn vì 2013y + 2012z nhỏ nhất = 1 + 1 = 2
Vậy chỉ có x = 1; y = 1; z = 0 thoả mãn
xét y=0 phương trình ko có nghiệm nguyên
xét x= 0 phương trình ko có nghiệm nguyên
xét x;y;z lớn hơn hoặc bằng 1 thì
2012^z chia hết cho 2
2013^y ko chia hết cho 2
=> 2012^z + 2013^y ko chia hết cho 2
mà 2014^x chia hết cho 2
=> vô lý
vậy phương trình có nghiệm (x;y;z)=(0;1;1)
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)
\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Leftrightarrow2^x=2^3\)
\(\Leftrightarrow x=3\)
Vậy x = 3
2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8
=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23
đặt A= 1+2+22+...+22015
=>2A=2+22+23+..+22016
=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1
\(\Rightarrow\)2x.(22016-1)=23.(22016-1)
=>x=3
x2014=x2015
=>x2014-x2015=0
=>x2014(1 - x)=0
=>\(\orbr{\begin{cases}x^{2014}=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
X=1hoac0 cho mik nha