Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+3 chia hết cho n+1 suy ra n+1+2 chia hết cho n+1
suy ra 2 chia hết cho n+1
Mà n là STN nên n+1=1 hoặc n+1=2
suy ra n=1 hoặc n=0
câu 1 mk hổng biết
câu 2 giải như sau
ta có : 12=3.4
A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)
=(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)
=3.(1+3)+33.(1+3)+....+32015.(1+3)
=3.4+33.4+....+32015.4
=4.(3+33+.....+32015)
Vì 4 chia hết cho 4=>4.(3+33+...+32015) (1)
Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12 (đpcm)
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link này nhé!
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
Dấu : là dấu chia hết nhé:
1. n^3 +2n + 4 : n + 3 => n^3 + 3n^2 - 3n^2 + 2n + 4 : n + 3
=> n^2(n + 3) - 3n^2 + 2n + 4 : n + 3 => - 3n^2 + 2n + 4 : n + 3 ( do n^2(n+3) : n + 3)
=> -3n^2 - 9n + 9n + 2n + 4 : n+3 => - 3n(n+3) + 11n + 4 : n + 3 => 11n + 33 - 33 + 4 : n + 3
=> 11(n + 3) - 29 : n + 3 => -29 : n+ 3 => n + 3 thuộc ư(-29) => n + 3 thuộc {-29, -1, 1, 29 } => n thuộc {-32, -4, -2, 26}
2. n^2 + 3n + 4 : n + 3 => n(n+3) + 4 : n+ 3 => 4: n+ 3 => n+ 3 thuộc ư(4) => n + 3 thuộc {-4, -2, -1, 1, 2, 4}
=>n thuộc {-7, -5, -4, -2, -1, 1}