Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0
=> 6x2 < 74 => x2 < 74/6 <13
vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9
x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên
x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên
x2 = 4 => 5y2 = 50 => y2 = 10 => loại
x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);
vì y2
luôn lớn hơn hoặc bằng 0 nên 5.y
2
cũng luôn lớn hơn hoặc bằng 0
=> 6x2
< 74 => x2
< 74/6 <13
vì x nguyên nên x2
có thể nhận các giá trị 0; 1; 4; 9
x
2
= 0 => 5y2
= 74 => y2
= 74/5 loại vì y nguyên
x
2
= 1 => 5y2
= 68 => y2
= 68/5 loại vì y nguyên
x
2
= 4 => 5y2
= 50 => y2
= 10 => loại
x
2
= 9 => 5y2
= 20 => y2
= 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)
:3
Bài 1 :
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0^2\)
\(a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Rightarrow\left[a^2+b^2+c^2\right]^2=\left[-2\left(ab+bc+ac\right)\right]^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab.bc+2bc.ac+2ab.ac\right)\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)
Bớt cả 2 vế đi \(2a^2b^2+2a^2c^2+2b^2c^2;\)có :
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
Cộng cả 2 vế với \(a^4+b^4+c^4;\)có :
\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)( Hằng đẳng thức bình phương tổng 3 hạng tử )
Vậy ...
Bình phương cả 2 vế của a + b + c = 0,ta có :
a2 + b2 + c2 + 2(ab + bc + ca) => a2 + b2 + c2 = -2(ab + bc + ca).Bình phương cả 2 vế của đẳng thức bên,ta có :
a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] = 4(a2b2 + b2c2 + a2c2)
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = a4 + b4 + c4 + a4 + b4 + c4 = 2(a4 + b4 + c4)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Có H = x2 + 5y2 + 4xy - 6x + 5y - 9
= [(x2 + 4xy + 4y2) - 6x - 12y + 9] + (y2 + 17y + \(\frac{289}{4}\)) - \(\frac{361}{4}\)
= [(x + 2y)2 - 2(x + 2y).3 + 32] + (y2 + 2.y.\(\frac{17}{2}\)+ \(\left(\frac{17}{2}\right)^2\)) - \(\frac{361}{4}\)
= (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\)
Thấy (x + 2y - 3)2 ≥ 0 với mọi x; y
\(\left(y+\frac{17}{2}\right)^2\ge0\) với mọi y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) ≥ 0 với mọi x; y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\) ≥ \(\frac{-361}{4}\) với mọi x; y
=> H ≥ \(\frac{-361}{4}\) với mọi x; y
Dấu "=" xảy ra khi ...
Bn tự giải tiếp.
P/s: ko chắc đúng
a. 5y(2y-1) - (3y+2)(3-3y)
=10y\(^2\) -5y - (9y-9y\(^2\)+6-6y)
=10y\(^2\) -5y - 9y + 9y\(^2\) - 6 + 6y
=19y\(^2\)- 8y -6
b. (6x+1)2 - 2(6x+1)(6x-1) + (6x-1)2
= (6x+1-6x+1)\(^2\)
= 2\(^2\) = 4
c. (2x+3) - 2(2x+3)(x-2) + (x-2)2
= 2x+3 - 2(2x\(^2\)-4x+3x-6) + (x\(^2\)- 4x + 4)
= 2x +3 - 4x\(^2\) + 8x - 6x +12 + x\(^2\)- 4x + 4
= -3x\(^2\) +19
a) 2x-5y+4y+2x
=4x+y
Tai x=3 y=-12 thi
4x3+(-12)=12-12=0
b)3x+4y-2x-3y
6x^2=74-5y^2
Dể thấy 6x^2 là số chẳn nên vế trái phải là số chẳn tức là y phải là số chẵn và 5y^2 phải nhỏ hơn 74.
y không thể =0 vì 74 không chia hết cho 6.
Từ đó ta tìm được y=3 hoặc -3