\(\sqrt{-4x^2+4x-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

-4x2 + 4x - 1 = -[(2x)2 - 2.2x.1 + 12] = -(2x - 1)2.

-(2x - 1)2 \(\ge0\)(biểu thức lấy căn) mà -(2x - 1)2\(\le0\)(vì\(\left(2x-1\right)^2\ge0\))

\(\Rightarrow-\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=0,5\)

4 tháng 8 2016

Mình làm thử, bạn xem có đúng hông nha!

   \(ĐKXĐ:\hept{\begin{cases}4x+2\ge0\\x^2+4x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow}x\ge-\frac{1}{2}}\)

Mình giải thử lun nha!

  \(\sqrt{4x+2}=\sqrt{x^2+4x+1}\) (1)

Bình phương cả 2 vế của pt, ta được:

  \(\left(1\right)\Leftrightarrow\left(\sqrt{4x+2}\right)^2=\left(\sqrt{x^2+4x+1}\right)^2\)

\(\Leftrightarrow4x+2=x^2+4x+1\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận }\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)

Vậy: \(S=\left\{1\right\}\)

(Nếu đúng thì tíck cho mìk vs nhé!)

23 tháng 8 2016

 \(\sqrt{4x^2-4x+1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy ĐKCĐ: \(x\ge\frac{1}{2}\)

\(A=\frac{\sqrt{4x^2-4x+1}}{4x^2-1}=\frac{\sqrt{\left(2x-1\right)^2}}{4x^2-1}=\frac{2x-1}{\left(2x-1\right)\left(2x+1\right)}=\frac{1}{2x+1}\)

10 tháng 5 2019

ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)

<=> \(x\ne-2\)và \(x\ne5\)

b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)

Với \(x-2>0\)<=> \(x>2\)

=> \(|x-2|=x-2\)

Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)

Với \(x-2< 0\)<=> \(x< 2\)

=> \(|x-2|=-\left(x-2\right)=2-x\)

Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)

Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)

10 tháng 5 2019

may tinh toi khong ra ket qua cho ban duoc

24 tháng 7 2017

a) ĐKXĐ: \(2-x^2\ge0\Leftrightarrow\left|x\right|< \sqrt{2}\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)

b) ĐKXĐ: \(5x^2-3>0\Leftrightarrow\left|x\right|>\sqrt{\dfrac{3}{5}}\Leftrightarrow x>\sqrt{\dfrac{3}{5}}\) hoặc \(x< -\sqrt{\dfrac{3}{5}}\)

c) ĐKXĐ: \(-\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

d) ĐKXĐ: \(\left(x-1\right)\left(x+2\right)>0\Leftrightarrow x>1\) hoặc \(x< -2\)