K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC. 

AB + BC + AC = 74 (*) 
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB) 
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra 
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được: 
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm 
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm

1 tháng 8 2018

a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao

=> Tam giác AMD cân tại A

=> AB cũng đồng thời là đường phân giác của tam giác AMD

=> góc MAB = góc BAD                           

Tương tự ta CM được AC là đường trung tuyến của tam giác AME

=> góc CAM = góc CAE

=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)

b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến 

=> IB là đường phân giác của góc DIM

=> IB là đường phân giác ngoài của tam giác IMK

Tương tự ta có : IC là đường phân giác của góc MKE

=> IC là đường phân giác ngoài của tam giác IMK

Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A

=> MA là đường phân giác trong của tam giác IMK

=> MA là đường phân giác của góc IMK

c.Tam giác ADM cân tại A => AD=AM

Tam giác AEM cân tại A => AE=AM

=> AD=AE => tam giác ADE cân tại A

Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )

=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất

=> AM có độ dài nhỏ nhất 

=> AM là đường cao của tam giác ABC 

=> M là chân đường cao kẻ từ A xuống BC

Xét ΔABC có 

AE là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(\Leftrightarrow EB=\dfrac{1}{2}\cdot EC\)

mà E,B,C thẳng hàng

nên B là trung điểm của EC(đpcm)

 

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân