Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a) Xét \(\Delta\)ABD và \(\Delta\)CED có:
^BAD = ^ECD ( = 1/2 ^BCx )
^ADB = ^CDE ( đối đỉnh)
=> \(\Delta\)ABD ~ \(\Delta\)CED ( g-g)
b) Xét \(\Delta\)EAC và \(\Delta\)ECD có:
^EAC = ^ECD ( = 1/2 ^BCx )
^AEC = ^CED ( ^E chung )
=> \(\Delta\)EAC ~ \(\Delta\)ECD ( g-g)
=> \(\frac{AE}{AC}=\frac{EC}{CD}\)(1)
Mặt khác từ (a) => \(\frac{AB}{AD}=\frac{EC}{CD}\)(2)
Từ (1) ; (2) => \(\frac{AE}{AC}=\frac{AB}{AD}\)=> AB. AC = AE.AD < AE. AE (3)
=> AB. AC < \(AE^2\)
c) Từ (3) ta có: AB. AC = AE.AD
Ta lại có: \(4AI^2-DE^2=\left(2AI-DE\right)\left(2AI+DE\right)\)
Vì I là trung điểm DE nên DI = IE = 1/2 DE => DE = 2 DI = 2IE
+) 2AI - DE = 2 ( AD + DI ) - 2 DI = 2AD + 2 DI - 2 DI = 2 AD
+) 2AI + DE = 2 ( AD + DI ) + DE = 2 AD + 2 DI + DE = 2 AD + DE + DE = 2 AD + 2 DE = 2 ( AD + DE ) = 2 AE
=> \(4AI^2-DE^2=2AD.2DE=4AD.DE=4AB.AC\)
Vậy...
d) Xét \(\Delta\)BDE và \(\Delta\)ADC có:
\(\frac{BD}{ED}=\frac{AD}{CD}\)( suy ra từ (a) )
^BDE = ^ADC ( đối đỉnh)
=> \(\Delta\)BDE ~ \(\Delta\)ADC ( g-c)
=> ^EBD = ^CAD = DCE
=> \(\Delta\)BEC cân
=> EB = EC
=> Trung trực BC qua E
Câu hỏi của Dương Văn Chiến - Toán lớp 8 - Học toán với OnlineMath
Xét ΔBDC có
E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒⇒ME//CD(Định lí 2 về đường trung bình của tam giác)
hay ME//ID
Xét ΔAEM có
D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
nên AI=IM(đpcm)
HT
a) = 5( x2 - 9y2 - 6y - 1 ) = 5[ x2 - ( 9y2 + 6y + 1 ) ] = 5[ x2 - ( 3y + 1 )2 ] = 5( x - 3y - 1 )( x + 3y + 1 )
b) = 125x3 - 25x2 + 15x2 - 3x + 5x - 1 = 25x2( 5x - 1 ) + 3x( 5x - 1 ) + ( 5x - 1 ) = ( 5x - 1 )( 25x2 + 3x + 1 )
c) = 5( x - 7 ) + a( x - 7 ) = ( x - 7 )( a + 5 )
d) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )
e) = ax2 + a - a2x - x = ax( a - x ) + ( a - x ) = ( a - x )( ax + 1 )
f) = ( 10x )2 - ( x2 + 25 )2 = ( 10x - x2 - 25 )( 10x + x2 + 25 ) = -( x - 5 )2( x + 5 )2
TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)