Cho DABC, gọi M là trung điểm của AB, q...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNQ va ΔQBM có

góc QMN=goc MQB

QM chung

góc MQN=góc QMB

=>ΔMNQ=ΔQBM

b: Xét tứ giác MNQB có

MN//QB

MB//NQ

=>MNQB là hình bình hành

=>NQ=MB=AM

c: Xét ΔABC có

M là trung điểm của AB

MN//BC

=>N là trug điểm của AC

5 tháng 3 2023

hog phải, ở tứ giác mình nối MQ lại để thành t giác, phù hợp với câu hỏi đề bài

 

10 tháng 6 2017

a/ Xét tam giác BEM và tam giác CFM có:

góc BEM = góc CFM = 900 (GT)

BM = MC (AM là trung tuyến t/g ABC)

góc B = góc C (t/g ABC cân)

=> tam giác BEM = tam giác CFM

b/ Ta có: AB = AC (t/g ABC cân)

BE = CF (t/g BEM = t/g CFM)

=> AE = AF

Xét hai tam giác vuông AEM và AFM có:

AE = AF (cmt)

AM: cạnh chung

=> tam giác AEM = tam giác AFM

=> ME = MF

Ta có: AE = AF; ME = MF

=> AM là trung trực của EF

c/ Xét hai tam giác vuông ABD và ACD có:

AB = AC (GT)

AD: cạnh chung

=> tam giác ABD = tam giác ACD

=> BD = CD

Ta có: AB = AC; BD = CD

=> AD là trung trực của EF

Ta có: AM là trung trực của EF

AD là trung trực của EF

=> AM trùng AD

Vậy A;M;D thẳng hàng.

---> đpcm.

10 tháng 6 2017

Ta có hình vẽ:

A B C E F M D

24 tháng 11 2017
GT △ABC,DB=DA,DG//BC,GH//AB
KL △△△△△△△△△△△△△△

14 tháng 6 2017

Hình vẽ:

A C B E K D

a/ Xét 2Δ vuông:ΔACE và ΔAKE có:

AE: chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

=> ΔACE = ΔAKE (ch-gn)

=> AC = AK (đpcm)

b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)

\(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)

=> \(\widehat{KAE}=\widehat{B}=30^o\)

=> \(\Delta EAB\) cân tại E

mà EK _l_ AB (gt)

=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)

=> KA = KB (đpcm)

c/ Xét \(\Delta EAB\) có:

EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)

AC _l_ BE ké dài (gt)

=> EK, BD, AC đồng quy tại 1 điểm (đpcm)

14 tháng 6 2017

đáp án ở đây bạn nha trừ câu c):

https://hoc24.vn/hoi-dap/question/59956.html

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

12 tháng 6 2017

A B C G H

a) Ta có:

\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)

\(\Rightarrow AH=4\left(cm\right)\) (AH>0)

Vậy BH=3 cm; AH=4 cm

12 tháng 6 2017

Tham khảo hình bài làm đầy đủ :

Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến

Chúc bn học tốt!

10 tháng 6 2017

A B C D E F

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

B A E F C D

a, Xét \(\Delta BAD\)\(\Delta BED\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác \(\widehat{ABC}\))

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

\(\Rightarrow AB=EB\Rightarrow\) B nằm trên trung trực của AE (1)

\(AD=ED\Rightarrow\) D nằm trên trung trực của AE (2)

Từ (1) và (2) => BD là trung trực của AE

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\)

=> DF=DC.

Vậy DF=DC

c, Ta có: tam giác ADF vuông tại A=> cạnh huyền DF>AD (3)

Mà DF=DC (4)

Từ (3) và (4) => AD<DC

Vậy AD<DC

d, Ta có:

+) CA là đường cao từ C của tam giác BCF

+) FE là đường cao từ F của tam giác BCF

Mà CA và FE cắt nhau tại D => D là trực tâm của tam giác BCF

=> BD là đường cao từ B của tam giác BCF => \(BD\perp FC\) (5)

Mặt khác, BD là trung trực của AE \(\Rightarrow BD\perp AE\) (6)

Từ (5) và (6) => AE//FC

Vậy AE//FC

12 tháng 6 2017

Huy Hoang tự vẽ hình nhé!

\(a,\) Xét \(\Delta MAC\)\(\Delta MDC\) ta có:

+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)

+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

+) \(MA=MB\left(gt\right)\)

\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\)\(CD=AB< AC\)

Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)

\(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)

\(\Rightarrow MAB>MAC\)

b, AH vuông với BC tại H

=> H là hình chiếu của A trên BC

HB là đường chiếu tương ứng của đường xiên AB

HC là đường chiếu tương ứng của đường xiên AC

\(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)

Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB

HC là hình chiếu của đường xiên EC

\(HB< HC\left(theodpcm3\right)\)

\(\Rightarrow EC< EB\left(dpcm4\right)\)

\(\)

12 tháng 6 2017

Hình đây nha bạn!

A B C D H E M

Chúc bạn học tốt!!!

1 tháng 12 2017

Đay lè p!

Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath

1 tháng 12 2017

Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath oehumlolangoaoa