Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+2+22+23+.......+298+299
A= (1+2)+(22+23)+.......+(298+299 )
A=3+22.(1+2)+...+298.(1+2)
A= 3+22.3+...+298.3
A=3.(22+...+298)
Vid 3 chia hết cho 3 nên A chia hết cho 3
Đơn giản như đang giỡn
HT
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9
Ta có: 2 = 1 . 2
2^2 = 2 . 2
2^3 = 2^2 . 2
.....
=> 1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)
=> 1 + 2 + 2^2 + ... + (2^8 . 3)
=> 1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)
=> 1 + 2 + 2^2 + ... + (2^7 . 7)
=> .....
=> 1 + 2 . 311
i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)
\(=\)\(2345-1000\div\left[19-2.3^2\right]\)
\(=\)\(2345-1000\div\left[19-2.9\right]\)
\(=\)\(2345-1000\div\left[19-18\right]\)
\(=\)\(2345-1000\div1\)
\(=\)\(2345-1000\)
\(=\)\(1345\)
j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)
\(=\)\(128-\left[68+8.2^2\right]\div4\)
\(=\)\(128-\left[68+8.4\right]\div4\)
\(=\)\(128-\left[68+32\right]\div4\)
\(=\)\(128-100\div4\)
\(=\)\(128-25\)
\(=\)\(3\)
k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)
\(=\)\(568-\left\{5.134+10\right\}\div10\)
\(=\)\(568-\left\{670+10\right\}\div10\)
\(=\)\(568-680\div10\)
\(=\)\(568-68\)
\(=\)\(500\)
a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+67\right\}\div15\)
\(=\)\(107-105\div15\)
\(=\)\(107-7\)
\(=\)\(7\)
b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)
\(=\)\(307-\left[20\div4+9\right]\div2\)
\(=\)\(307-\left[5+9\right]\div2\)
\(=\)\(307-14\div2\)
\(=\)\(307-7\)
\(=\)\(300\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)
\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)
\(=\)\(205-\left[1200-10^3\right]\div40\)
\(=\)\(205-\left[1200-1000\right]\div40\)
\(=\)\(205-200\div40\)
\(=\)\(205-5\)
\(=\)\(200\)
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21
`Answer:`
\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)
\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...\left(5^{1999}+5^{2000}+5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(=5.\left(1+5+5^2+5^3+5^4+5^5\right)+5^7.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{1999}.\left(1+5+5^2+5^3+5^4+5^5\right)\)
\(=\left(1+5+5^2+5^3+5^4+5^5\right).\left(5+5^7+...+5^{1999}\right)\)
\(=3906.\left(5+5^7+...+5^{1999}\right)⋮126\)
\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)
\(=\left(5+5^2+5^3+5^4\right)+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)
\(=\left(5+5^2+5^3+5^4\right).\left(1+5^4+...+5^{2000}\right)\)
\(=780.\left(1+5^4+...+5^{2000}\right)⋮65\)
S = 1 + 3 + 32 + 33 + ... + 38 + 39
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )
S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 )
S = 4 + 4 .32 + .. + 4 . 38
S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
Học tốt
#DươngS = 1 + 3 + 32 + 33 + 34+35+ 36 + 37 + 38+39
S=( 1 + 3)+(32 + 33)+(34+35)+(36 + 37)+(38+39)
s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)
S=4.(1+32+34+36+38)
CHIA HẾT CHO 4