Cho tam giác ABC vuông tại A, đường phân g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2023

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có:
- BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\) (vì BD là tia phân giác \(\widehat{ABC}\))

Suy ra ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Từ a) suy ra AD = DH (hai cạnh tương ứng)

c) Đề bị thiếu: Điểm M ở đâu???

5 tháng 6 2023

a) + Vì tam giác ABC vuông tại A (gt)
    => tam giác ABD vuông tại a
    + Vì DH vuông góc với BC (gt)
    => tam giác HBD vuông tại H
    + Xét ΔABD và ΔHBD, có:
       + Chung BD 
       + góc ABD = góc HBD (BD là tia phân giác của góc ABC)
    => ΔABD = ΔHBD (cạnh huyền - góc nhọn)

b) Vì ΔABD = ΔHBD (cmt)
    => AD = DH (2 cạnh tương ứng)

c) Ko đủ dữ kiện 

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

20 tháng 2 2021

cái naỳ thì mk chịu

20 tháng 2 2021

n = 100-15-30-25=30 v

ta có 

(4*25+30*5+x*30+15*8)/100=5.5

x=6
 

10 tháng 6 2017

a/ Xét tam giác BEM và tam giác CFM có:

góc BEM = góc CFM = 900 (GT)

BM = MC (AM là trung tuyến t/g ABC)

góc B = góc C (t/g ABC cân)

=> tam giác BEM = tam giác CFM

b/ Ta có: AB = AC (t/g ABC cân)

BE = CF (t/g BEM = t/g CFM)

=> AE = AF

Xét hai tam giác vuông AEM và AFM có:

AE = AF (cmt)

AM: cạnh chung

=> tam giác AEM = tam giác AFM

=> ME = MF

Ta có: AE = AF; ME = MF

=> AM là trung trực của EF

c/ Xét hai tam giác vuông ABD và ACD có:

AB = AC (GT)

AD: cạnh chung

=> tam giác ABD = tam giác ACD

=> BD = CD

Ta có: AB = AC; BD = CD

=> AD là trung trực của EF

Ta có: AM là trung trực của EF

AD là trung trực của EF

=> AM trùng AD

Vậy A;M;D thẳng hàng.

---> đpcm.

10 tháng 6 2017

Ta có hình vẽ:

A B C E F M D

21 tháng 6 2021

M P N D E H K

a) Xét tam giác PMD và tam giác EMD, ta có :

      PMD = EMD  ( gt )

      MD chung

      MP = ME ( gt )

 => Tam giác PMD bằng Tam giác EMD ( c . g . c )

b) Xét tam giác MPK và tam giác MEK, ta có :

      PMD = EMD ( gt )

      MK chung

      MP = ME ( gt )

  => Tam giác MPK = Tam giác MEK ( c . g .c )

  => KP = KE ( 1 )

  => MKE = MKP = 900 ( 2 )

Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE

  

21 tháng 6 2021

c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }

  Xét tam giác MHD và tam giác MND, ta có :

      HMD = NMD ( gt )

      MD chung

      MDN = MDH ( gt )

  => Tam giác MHD bằng tam giác MND ( g . c .g )

  => HD = DN

d)