Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: A,B,O,C cùng thuộc 1 đường tròn
Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,B,O,C cùng thuộc một đường tròn(đpcm)
⇔A,B,O,C∈(O')
Ta có: ΔABO vuông tại B(AB⊥OB tại B)
nên B nằm trên đường tròn đường kính AO(Định lí tam giác vuông)(1)
Ta có: ΔACO vuông tại C(OC⊥AC tại C)
nên C nằm trên đường tròn đường kính AO(Định lí tam giác vuông)(2)
Từ (1) và (2) suy ra B và C cùng nằm trên đường tròn đường kính AO
⇔B,C,A,O cùng nằm trên đường tròn đường kính AO
mà B,C,A,O∈(O')(cmt)
nên O' là tâm của đường tròn đường kính AO
hay O' là trung điểm của AO
⇔Bán kính của đường tròn ngoại tiếp tứ giác ABOC là OB
b) Xét (O) có
\(\widehat{ACM}\) là góc tạo bởi tia tiếp tuyến AC và dây cung MC
\(\widehat{MNC}\) là góc nội tiếp chắn cung \(\stackrel\frown{MC}\)
Do đó: \(\widehat{ACM}=\widehat{MNC}\)(Hệ quả của góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{ACM}=\widehat{ANC}\)
Xét ΔAMC và ΔACN có
\(\widehat{ACM}=\widehat{ANC}\)(cmt)
\(\widehat{MAC}\) chung
Do đó: ΔAMC∼ΔACN(g-g)
⇔\(\dfrac{AM}{AC}=\dfrac{AC}{AN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=AM\cdot AN\)(3)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Suy ra: \(AB^2=AC^2\)(4)
Từ (3) và (4) suy ra \(AB^2=AC^2=AM\cdot AN\)(đpcm)
a) \(\widehat{AMO}=\widehat{AIO}=90^o\) nên \(M\)và \(I\)cùng nhìn \(AO\)dưới góc \(90^o\)nên \(AMOI\)nội tiếp.
b) \(OM=ON\)nên \(O\)thuộc đường trung trực của \(MN\)
\(AM=AN\)nên \(A\)thuộc đường trung trực của \(MN\)
nên \(AO\)là trung trực của \(MN\)nên \(AO\perp MN\).
Tam giác \(AMO\)vuông tại \(M\)đường cao \(MK\)nên
\(AM^2=AK.AO\).
ý a dễ
b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90
Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)
=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn
c/
Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)
số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)
số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)
Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC
@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.
d) Tứ giác HMIK nội tiếp => góc HKN = góc HMI (góc ngoài = góc đối trong) => tg vuông HKN và tg vuông HMC => HK/HM = HN/HC => HK.HC = HM.HN (1)
Ta lại có góc MBN nội tiếp chắn nửa (O) nên = 900 => HB2 = HM.HN (hệ thức tg vuông) (2)
Từ (1) và (2) => HB2 = HK.HC => HK = HB2/HC = không đổi ( Vì A, B, C cố định) => K cố định
Vậy IN luôn đi qua điểm K cố định
góc CEB=góc ACB(=1/2*sđ cung BC)
I là trung điểm của MN nên OI vuông góc MN
=>góc OIM=góc OIA=90 độ
góc OCA+góc OIA=180 độ
=>ACOI nội tiếp
mà ACOB nội tiếp
nên A,B,I,O,C cùng thuộc 1 đường tròn
=>góc AIB=góc ACB=góc EIN
=>góc CEB=góc EIN
=>MN//EC
=>AN//EC
Sao góc AIB=góc ACB mà lại suy ra góc CEB=góc EIN vậy ạ